|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Natural Adversarial Defense.
- """
- from ..attacks.gradient_method import FastGradientSignMethod
- from .adversarial_defense import AdversarialDefenseWithAttacks
-
-
- class NaturalAdversarialDefense(AdversarialDefenseWithAttacks):
- """
- Adversarial training based on FGSM.
-
- Reference: `A. Kurakin, et al., "Adversarial machine learning at scale," in
- ICLR, 2017. <https://arxiv.org/abs/1611.01236>`_.
-
- Args:
- network (Cell): A MindSpore network to be defensed.
- loss_fn (Union[Loss, None]): Loss function. Default: None.
- optimizer (Cell): Optimizer used to train the network. Default: None.
- bounds (tuple): Upper and lower bounds of data. In form of (clip_min,
- clip_max). Default: (0.0, 1.0).
- replace_ratio (float): Ratio of replacing original samples with
- adversarial samples. Default: 0.5.
- eps (float): Step size of the attack method(FGSM). Default: 0.1.
-
- Examples:
- >>> from mindspore.nn.optim.momentum import Momentum
- >>> import mindspore.ops.operations as P
- >>> from mindarmour.adv_robustness.defenses import NaturalAdversarialDefense
- >>> class Net(nn.Cell):
- ... def __init__(self):
- ... super(Net, self).__init__()
- ... self._softmax = P.Softmax()
- ... self._dense = nn.Dense(10, 10)
- ... self._squeeze = P.Squeeze(1)
- ... def construct(self, inputs):
- ... out = self._softmax(inputs)
- ... out = self._dense(out)
- ... out = self._squeeze(out)
- ... return out
- >>> net = Net()
- >>> lr = 0.001
- >>> momentum = 0.9
- >>> batch_size = 16
- >>> num_classes = 10
- >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
- >>> optimizer = Momentum(net.trainable_params(), learning_rate=lr, momentum=momentum)
- >>> nad = NaturalAdversarialDefense(net, loss_fn=loss_fn, optimizer=optimizer)
- >>> inputs = np.random.rand(batch_size, 1, 10).astype(np.float32)
- >>> labels = np.random.randint(10, size=batch_size).astype(np.int32)
- >>> labels = np.eye(num_classes)[labels].astype(np.float32)
- >>> loss = nad.defense(inputs, labels)
- """
- def __init__(self, network, loss_fn=None, optimizer=None,
- bounds=(0.0, 1.0), replace_ratio=0.5, eps=0.1):
- attack = FastGradientSignMethod(network,
- eps=eps,
- alpha=None,
- bounds=bounds,
- loss_fn=loss_fn)
- super(NaturalAdversarialDefense, self).__init__(
- network,
- [attack],
- loss_fn=loss_fn,
- optimizer=optimizer,
- bounds=bounds,
- replace_ratio=replace_ratio)
|