|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
-
- import numpy as np
- import pytest
- from mindspore import Tensor
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour import BlackModel
- from mindarmour.adv_robustness.attacks import HopSkipJumpAttack
- from mindarmour.utils.logger import LogUtil
-
- from tests.ut.python.utils.mock_net import Net
-
- context.set_context(mode=context.GRAPH_MODE)
-
- LOGGER = LogUtil.get_instance()
- TAG = 'HopSkipJumpAttack'
-
-
- class ModelToBeAttacked(BlackModel):
- """model to be attack"""
-
- def __init__(self, network):
- super(ModelToBeAttacked, self).__init__()
- self._network = network
-
- def predict(self, inputs):
- """predict"""
- if len(inputs.shape) == 3:
- inputs = inputs[np.newaxis, :]
- result = self._network(Tensor(inputs.astype(np.float32)))
- return result.asnumpy()
-
-
- def random_target_labels(true_labels):
- target_labels = []
- for label in true_labels:
- while True:
- target_label = np.random.randint(0, 10)
- if target_label != label:
- target_labels.append(target_label)
- break
- return target_labels
-
-
- def create_target_images(dataset, data_labels, target_labels):
- res = []
- for label in target_labels:
- for i, data_label in enumerate(data_labels):
- if data_label == label:
- res.append(dataset[i])
- break
- return np.array(res)
-
-
- # public variable
- def get_model():
- # upload trained network
- current_dir = os.path.dirname(os.path.abspath(__file__))
- ckpt_path = os.path.join(current_dir,
- '../../../dataset/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt')
- net = Net()
- load_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, load_dict)
- net.set_train(False)
- model = ModelToBeAttacked(net)
- return model
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_hsja_mnist_attack_ascend():
- """
- Feature: test HSJA attack for ascend
- Description: make sure the HSJA attack works properly
- Expectation: predict without any bugs
- """
- context.set_context(device_target="Ascend")
- current_dir = os.path.dirname(os.path.abspath(__file__))
-
-
- # get test data
- test_images_set = np.load(os.path.join(current_dir,
- '../../../dataset/test_images.npy'))
- test_labels_set = np.load(os.path.join(current_dir,
- '../../../dataset/test_labels.npy'))
- # prediction accuracy before attack
- model = get_model()
- batch_num = 1 # the number of batches of attacking samples
- predict_labels = []
- i = 0
-
- for img in test_images_set:
- i += 1
- pred_labels = np.argmax(model.predict(img), axis=1)
- predict_labels.append(pred_labels)
- if i >= batch_num:
- break
- predict_labels = np.concatenate(predict_labels)
- true_labels = test_labels_set[:batch_num]
- accuracy = np.mean(np.equal(predict_labels, true_labels))
- LOGGER.info(TAG, "prediction accuracy before attacking is : %s",
- accuracy)
- test_images = test_images_set[:batch_num]
-
- # attacking
- norm = 'l2'
- search = 'grid_search'
- target = False
-
- attack = HopSkipJumpAttack(model, constraint=norm, stepsize_search=search)
- if target:
- target_labels = random_target_labels(true_labels)
- target_images = create_target_images(test_images_set, test_labels_set,
- target_labels)
- LOGGER.info(TAG, 'len target labels : %s', len(target_labels))
- LOGGER.info(TAG, 'len target_images : %s', len(target_images))
- LOGGER.info(TAG, 'len test_images : %s', len(test_images))
- attack.set_target_images(target_images)
- success_list, adv_data, _ = attack.generate(test_images, target_labels)
- else:
- success_list, adv_data, _ = attack.generate(test_images, None)
- assert (adv_data != test_images).any()
-
- adv_datas = []
- gts = []
- for success, adv, gt in zip(success_list, adv_data, true_labels):
- if success:
- adv_datas.append(adv)
- gts.append(gt)
- if gts:
- adv_datas = np.concatenate(np.asarray(adv_datas), axis=0)
- gts = np.asarray(gts)
- pred_logits_adv = model.predict(adv_datas)
- pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
- accuracy_adv = np.mean(np.equal(pred_lables_adv, gts))
- LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
- accuracy_adv)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_hsja_mnist_attack_cpu():
- """
- Feature: test HSJA attack for cpu
- Description: make sure the HSJA attack works properly
- Expectation: predict without any bugs
- """
- context.set_context(device_target="CPU")
- current_dir = os.path.dirname(os.path.abspath(__file__))
-
-
- # get test data
- test_images_set = np.load(os.path.join(current_dir,
- '../../../dataset/test_images.npy'))
- test_labels_set = np.load(os.path.join(current_dir,
- '../../../dataset/test_labels.npy'))
- # prediction accuracy before attack
- model = get_model()
- batch_num = 1 # the number of batches of attacking samples
- predict_labels = []
- i = 0
-
- for img in test_images_set:
- i += 1
- pred_labels = np.argmax(model.predict(img), axis=1)
- predict_labels.append(pred_labels)
- if i >= batch_num:
- break
- predict_labels = np.concatenate(predict_labels)
- true_labels = test_labels_set[:batch_num]
- accuracy = np.mean(np.equal(predict_labels, true_labels))
- LOGGER.info(TAG, "prediction accuracy before attacking is : %s",
- accuracy)
- test_images = test_images_set[:batch_num]
-
- # attacking
- norm = 'l2'
- search = 'grid_search'
- target = False
-
- attack = HopSkipJumpAttack(model, constraint=norm, stepsize_search=search)
- if target:
- target_labels = random_target_labels(true_labels)
- target_images = create_target_images(test_images_set, test_labels_set,
- target_labels)
- LOGGER.info(TAG, 'len target labels : %s', len(target_labels))
- LOGGER.info(TAG, 'len target_images : %s', len(target_images))
- LOGGER.info(TAG, 'len test_images : %s', len(test_images))
- attack.set_target_images(target_images)
- success_list, adv_data, _ = attack.generate(test_images, target_labels)
- else:
- success_list, adv_data, _ = attack.generate(test_images, None)
- assert (adv_data != test_images).any()
-
- adv_datas = []
- gts = []
- for success, adv, gt in zip(success_list, adv_data, true_labels):
- if success:
- adv_datas.append(adv)
- gts.append(gt)
- if gts:
- adv_datas = np.concatenate(np.asarray(adv_datas), axis=0)
- gts = np.asarray(gts)
- pred_logits_adv = model.predict(adv_datas)
- pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
- accuracy_adv = np.mean(np.equal(pred_lables_adv, gts))
- LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
- accuracy_adv)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error_ascend():
- context.set_context(device_target="Ascend")
- model = get_model()
- norm = 'l2'
- with pytest.raises(ValueError):
- assert HopSkipJumpAttack(model, constraint=norm, stepsize_search='bad-search')
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error_cpu():
- context.set_context(device_target="CPU")
- model = get_model()
- norm = 'l2'
- with pytest.raises(ValueError):
- assert HopSkipJumpAttack(model, constraint=norm, stepsize_search='bad-search')
|