|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- DeepFool-Attack test.
- """
- import numpy as np
- import pytest
-
- import mindspore.ops.operations as P
- from mindspore.nn import Cell
- from mindspore import context
- from mindspore import Tensor
-
- from mindarmour.adv_robustness.attacks import DeepFool
-
-
- # for user
- class Net(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = Net()
- """
-
- def __init__(self):
- """
- Introduce the layers used for network construction.
- """
- super(Net, self).__init__()
- self._softmax = P.Softmax()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- out = self._softmax(inputs)
- return out
-
-
- class Net2(Cell):
- """
- Construct the network of target model, specifically for detection model test case.
-
- Examples:
- >>> net = Net2()
- """
- def __init__(self):
- super(Net2, self).__init__()
- self._softmax = P.Softmax()
-
- def construct(self, inputs1, inputs2):
- out1 = self._softmax(inputs1)
- out2 = self._softmax(inputs2)
- return out2, out1
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_deepfool_attack_ascend():
- """
- Feature: Deepfool-Attack test for ascend
- Description: Given multiple images, we want to make sure the adversarial examples
- generated are different from the images
- Expectation: input_np != ms_adv_x
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = Net()
- input_shape = (1, 5)
- _, classes = input_shape
- input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
- input_me = Tensor(input_np)
- true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
- attack = DeepFool(net, classes, max_iters=10, norm_level=2,
- bounds=(0.0, 1.0))
- adv_data = attack.generate(input_np, true_labels)
- # expected adv value
- expect_value = np.asarray([[0.10300991, 0.20332647, 0.59308802, 0.59651263,
- 0.40406296]])
- assert np.allclose(adv_data, expect_value), 'mindspore deepfool_method' \
- ' implementation error, ms_adv_x != expect_value'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_deepfool_attack_cpu():
- """
- Feature: Deepfool-Attack test for cpu
- Description: Given multiple images, we want to make sure the adversarial examples
- generated are different from the images
- Expectation: input_np != ms_adv_x
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = Net()
- input_shape = (1, 5)
- _, classes = input_shape
- input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
- input_me = Tensor(input_np)
- true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
- attack = DeepFool(net, classes, max_iters=10, norm_level=2,
- bounds=(0.0, 1.0))
- adv_data = attack.generate(input_np, true_labels)
- # expected adv value
- expect_value = np.asarray([[0.10300991, 0.20332647, 0.59308802, 0.59651263,
- 0.40406296]])
- assert np.allclose(adv_data, expect_value), 'mindspore deepfool_method' \
- ' implementation error, ms_adv_x != expect_value'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_deepfool_attack_detection_ascend():
- """
- Feature: Deepfool-Attack-Detection test for ascend
- Description: Given multiple images, we want to make sure the adversarial examples
- generated are different from the images
- Expectation: input_np != ms_adv_x
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = Net2()
- inputs1_np = np.random.random((2, 10, 10)).astype(np.float32)
- inputs2_np = np.random.random((2, 10, 5)).astype(np.float32)
- gt_boxes, gt_logits = net(Tensor(inputs1_np), Tensor(inputs2_np))
- gt_boxes, gt_logits = gt_boxes.asnumpy(), gt_logits.asnumpy()
- gt_labels = np.argmax(gt_logits, axis=2)
- num_classes = 10
-
- attack = DeepFool(net, num_classes, model_type='detection', reserve_ratio=0.3,
- bounds=(0.0, 1.0))
- adv_data = attack.generate((inputs1_np, inputs2_np), (gt_boxes, gt_labels))
- assert np.any(adv_data != inputs1_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_deepfool_attack_detection_cpu():
- """
- Feature: Deepfool-Attack-Detection test for cpu
- Description: Given multiple images, we want to make sure the adversarial examples
- generated are different from the images
- Expectation: input_np != ms_adv_x
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = Net2()
- inputs1_np = np.random.random((2, 10, 10)).astype(np.float32)
- inputs2_np = np.random.random((2, 10, 5)).astype(np.float32)
- gt_boxes, gt_logits = net(Tensor(inputs1_np), Tensor(inputs2_np))
- gt_boxes, gt_logits = gt_boxes.asnumpy(), gt_logits.asnumpy()
- gt_labels = np.argmax(gt_logits, axis=2)
- num_classes = 10
-
- attack = DeepFool(net, num_classes, model_type='detection', reserve_ratio=0.3,
- bounds=(0.0, 1.0))
- adv_data = attack.generate((inputs1_np, inputs2_np), (gt_boxes, gt_labels))
- assert np.any(adv_data != inputs1_np)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_deepfool_attack_inf_ascend():
- """
- Feature: Deepfool-Attack with inf-norm test for ascend
- Description: Given multiple images, we want to make sure the adversarial examples
- generated are different from the images
- Expectation: input_np != ms_adv_x
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = Net()
- input_shape = (1, 5)
- _, classes = input_shape
- input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
- input_me = Tensor(input_np)
- true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
- attack = DeepFool(net, classes, max_iters=10, norm_level=np.inf,
- bounds=(0.0, 1.0))
- adv_data = attack.generate(input_np, true_labels)
- assert np.any(input_np != adv_data)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_deepfool_attack_inf_cpu():
- """
- Feature: Deepfool-Attack with inf-norm test for cpu
- Description: Given multiple images, we want to make sure the adversarial examples
- generated are different from the images
- Expectation: input_np != ms_adv_x
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = Net()
- input_shape = (1, 5)
- _, classes = input_shape
- input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
- input_me = Tensor(input_np)
- true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
- attack = DeepFool(net, classes, max_iters=10, norm_level=np.inf,
- bounds=(0.0, 1.0))
- adv_data = attack.generate(input_np, true_labels)
- assert np.any(input_np != adv_data)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error_ascend():
- """
- Feature: value error test for ascend
- Description: value error for deep fool
- Expectation: attack.generate works
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- net = Net()
- input_shape = (1, 5)
- _, classes = input_shape
- input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
- input_me = Tensor(input_np)
- true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
- with pytest.raises(NotImplementedError):
- # norm_level=0 is not available
- attack = DeepFool(net, classes, max_iters=10, norm_level=1,
- bounds=(0.0, 1.0))
- assert attack.generate(input_np, true_labels)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error_cpu():
- """
- Feature: value error test for cpu
- Description: value error for deep fool
- Expectation: attack.generate works
- """
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- net = Net()
- input_shape = (1, 5)
- _, classes = input_shape
- input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
- input_me = Tensor(input_np)
- true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
- with pytest.raises(NotImplementedError):
- # norm_level=0 is not available
- attack = DeepFool(net, classes, max_iters=10, norm_level=1,
- bounds=(0.0, 1.0))
- assert attack.generate(input_np, true_labels)
|