|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- DP-Monitor test.
- """
- import pytest
- import numpy as np
-
- import mindspore.nn as nn
- import mindspore.dataset as ds
- from mindspore.train import Model
- import mindspore.context as context
-
- from mindarmour.privacy.diff_privacy import PrivacyMonitorFactory
- from mindarmour.utils.logger import LogUtil
-
- from ut.python.utils.mock_net import Net
-
- LOGGER = LogUtil.get_instance()
- TAG = 'DP-Monitor Test'
-
-
- def dataset_generator():
- batch_size = 16
- batches = 128
- data = np.random.random((batches * batch_size, 1, 32, 32)).astype(
- np.float32)
- label = np.random.randint(0, 10, batches * batch_size).astype(np.int32)
- for i in range(batches):
- yield data[i * batch_size: (i + 1) * batch_size], \
- label[i * batch_size: (i + 1) * batch_size]
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_dp_monitor():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- batch_size = 16
- epochs = 1
- rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
- batch_size=batch_size,
- initial_noise_multiplier=0.4,
- noise_decay_rate=6e-3)
- suggest_epoch = rdp.max_epoch_suggest()
- LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
- suggest_epoch)
- network = Net()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
-
- model = Model(network, net_loss, net_opt)
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- ds1 = ds.GeneratorDataset(dataset_generator,
- ["data", "label"])
- model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_inference
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_dp_monitor_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- batch_size = 16
- epochs = 1
- rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
- batch_size=batch_size,
- initial_noise_multiplier=0.4,
- noise_decay_rate=6e-3)
- suggest_epoch = rdp.max_epoch_suggest()
- LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
- suggest_epoch)
- network = Net()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
-
- model = Model(network, net_loss, net_opt)
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- ds1 = ds.GeneratorDataset(dataset_generator,
- ["data", "label"])
- model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_dp_monitor_cpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- batch_size = 16
- epochs = 1
- rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000,
- batch_size=batch_size,
- initial_noise_multiplier=0.4,
- noise_decay_rate=6e-3)
- suggest_epoch = rdp.max_epoch_suggest()
- LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
- suggest_epoch)
- network = Net()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
-
- model = Model(network, net_loss, net_opt)
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- ds1 = ds.GeneratorDataset(dataset_generator,
- ["data", "label"])
- model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_dp_monitor_zcdp():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- batch_size = 16
- epochs = 1
- zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000,
- batch_size=batch_size,
- initial_noise_multiplier=0.4,
- noise_decay_rate=6e-3)
- suggest_epoch = zcdp.max_epoch_suggest()
- LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
- suggest_epoch)
- network = Net()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
-
- model = Model(network, net_loss, net_opt)
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- ds1 = ds.GeneratorDataset(dataset_generator,
- ["data", "label"])
- model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_inference
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_dp_monitor_zcdp_gpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- batch_size = 16
- epochs = 1
- zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000,
- batch_size=batch_size,
- initial_noise_multiplier=0.4,
- noise_decay_rate=6e-3)
- suggest_epoch = zcdp.max_epoch_suggest()
- LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
- suggest_epoch)
- network = Net()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
-
- model = Model(network, net_loss, net_opt)
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- ds1 = ds.GeneratorDataset(dataset_generator,
- ["data", "label"])
- model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_dp_monitor_zcdp_cpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- batch_size = 16
- epochs = 1
- zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000,
- batch_size=batch_size,
- initial_noise_multiplier=0.4,
- noise_decay_rate=6e-3)
- suggest_epoch = zcdp.max_epoch_suggest()
- LOGGER.info(TAG, 'The recommended maximum training epochs is: %s',
- suggest_epoch)
- network = Net()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
-
- model = Model(network, net_loss, net_opt)
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- ds1 = ds.GeneratorDataset(dataset_generator,
- ["data", "label"])
- model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False)
|