|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import sys
- import time
- import numpy as np
- import pytest
- from scipy.special import softmax
-
- from mindspore import Model
- from mindspore import Tensor
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.attacks.lbfgs import LBFGS
- from mindarmour.utils.logger import LogUtil
- from mindarmour.evaluations.attack_evaluation import AttackEvaluate
-
- from lenet5_net import LeNet5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- sys.path.append("..")
- from data_processing import generate_mnist_dataset
-
- LOGGER = LogUtil.get_instance()
- TAG = 'LBFGS_Test'
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_lbfgs_attack():
- """
- LBFGS-Attack test
- """
- # upload trained network
- ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_name)
- load_param_into_net(net, load_dict)
-
- # get test data
- data_list = "./MNIST_unzip/test"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size=batch_size, sparse=False)
-
- # prediction accuracy before attack
- model = Model(net)
- batch_num = 3 # the number of batches of attacking samples
- test_images = []
- test_labels = []
- predict_labels = []
- i = 0
- for data in ds.create_tuple_iterator():
- i += 1
- images = data[0].astype(np.float32)
- labels = data[1]
- test_images.append(images)
- test_labels.append(labels)
- pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
- axis=1)
- predict_labels.append(pred_labels)
- if i >= batch_num:
- break
- predict_labels = np.concatenate(predict_labels)
- true_labels = np.argmax(np.concatenate(test_labels), axis=1)
- accuracy = np.mean(np.equal(predict_labels, true_labels))
- LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy)
-
- # attacking
- is_targeted = True
- if is_targeted:
- targeted_labels = np.random.randint(0, 10, size=len(true_labels)).astype(np.int32)
- for i in range(len(true_labels)):
- if targeted_labels[i] == true_labels[i]:
- targeted_labels[i] = (targeted_labels[i] + 1) % 10
- else:
- targeted_labels = true_labels.astype(np.int32)
- targeted_labels = np.eye(10)[targeted_labels].astype(np.float32)
- attack = LBFGS(net, is_targeted=is_targeted)
- start_time = time.clock()
- adv_data = attack.batch_generate(np.concatenate(test_images),
- targeted_labels,
- batch_size=batch_size)
- stop_time = time.clock()
- pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
- # rescale predict confidences into (0, 1).
- pred_logits_adv = softmax(pred_logits_adv, axis=1)
- pred_labels_adv = np.argmax(pred_logits_adv, axis=1)
-
- accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels))
- LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
- accuracy_adv)
- attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1),
- np.concatenate(test_labels),
- adv_data.transpose(0, 2, 3, 1),
- pred_logits_adv,
- targeted=is_targeted,
- target_label=np.argmax(targeted_labels,
- axis=1))
- LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
- attack_evaluate.mis_classification_rate())
- LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
- attack_evaluate.avg_conf_adv_class())
- LOGGER.info(TAG, 'The average confidence of true class is : %s',
- attack_evaluate.avg_conf_true_class())
- LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
- 'samples and adversarial samples are: %s',
- attack_evaluate.avg_lp_distance())
- LOGGER.info(TAG, 'The average structural similarity between original '
- 'samples and adversarial samples are: %s',
- attack_evaluate.avg_ssim())
- LOGGER.info(TAG, 'The average costing time is %s',
- (stop_time - start_time)/(batch_num*batch_size))
-
-
- if __name__ == '__main__':
- test_lbfgs_attack()
|