|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- LBFGS-Attack test.
- """
- import sys
- import numpy as np
- import pytest
- import os
-
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.attacks.lbfgs import LBFGS
- from mindarmour.utils.logger import LogUtil
-
- sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)),
- "../../../../"))
- from example.mnist_demo.lenet5_net import LeNet5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- LOGGER = LogUtil.get_instance()
- TAG = 'LBFGS_Test'
- LOGGER.set_level('DEBUG')
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_lbfgs_attack():
- """
- LBFGS-Attack test
- """
- np.random.seed(123)
- # upload trained network
- current_dir = os.path.dirname(os.path.abspath(__file__))
- ckpt_name = os.path.join(current_dir,
- '../test_data/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt')
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_name)
- load_param_into_net(net, load_dict)
-
- # get one mnist image
- input_np = np.load(os.path.join(current_dir,
- '../test_data/test_images.npy'))[:1]
- label_np = np.load(os.path.join(current_dir,
- '../test_data/test_labels.npy'))[:1]
- LOGGER.debug(TAG, 'true label is :{}'.format(label_np[0]))
- classes = 10
- target_np = np.random.randint(0, classes, 1)
- while target_np == label_np[0]:
- target_np = np.random.randint(0, classes)
- target_np = np.eye(10)[target_np].astype(np.float32)
-
- attack = LBFGS(net, is_targeted=True)
- LOGGER.debug(TAG, 'target_np is :{}'.format(target_np[0]))
- adv_data = attack.generate(input_np, target_np)
|