|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """data processing"""
-
- import os
- import mindspore.dataset as ds
- import mindspore.dataset.vision.c_transforms as CV
- import mindspore.dataset.transforms.c_transforms as C
- from mindspore.dataset.vision import Inter
- import mindspore.common.dtype as mstype
-
-
- def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
- num_samples=None, num_parallel_workers=1, sparse=True):
- """
- create dataset for training or testing
- """
- # define dataset
- ds1 = ds.MnistDataset(data_path, num_samples=num_samples)
-
- # define operation parameters
- resize_height, resize_width = 32, 32
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width),
- interpolation=Inter.LINEAR)
- rescale_op = CV.Rescale(rescale, shift)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- if not sparse:
- one_hot_enco = C.OneHot(10)
- ds1 = ds1.map(input_columns="label", operations=one_hot_enco,
- num_parallel_workers=num_parallel_workers)
- type_cast_op = C.TypeCast(mstype.float32)
- ds1 = ds1.map(input_columns="label", operations=type_cast_op,
- num_parallel_workers=num_parallel_workers)
- ds1 = ds1.map(input_columns="image", operations=resize_op,
- num_parallel_workers=num_parallel_workers)
- ds1 = ds1.map(input_columns="image", operations=rescale_op,
- num_parallel_workers=num_parallel_workers)
- ds1 = ds1.map(input_columns="image", operations=hwc2chw_op,
- num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- buffer_size = 10000
- ds1 = ds1.shuffle(buffer_size=buffer_size)
- ds1 = ds1.batch(batch_size, drop_remainder=True)
- ds1 = ds1.repeat(repeat_size)
-
- return ds1
-
-
- def vgg_create_dataset100(data_home, image_size, batch_size, rank_id=0, rank_size=1, repeat_num=1,
- training=True, num_samples=None, shuffle=True):
- """Data operations."""
- ds.config.set_seed(1)
- data_dir = os.path.join(data_home, "train")
- if not training:
- data_dir = os.path.join(data_home, "test")
-
- if num_samples is not None:
- data_set = ds.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id,
- num_samples=num_samples, shuffle=shuffle)
- else:
- data_set = ds.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
-
- input_columns = ["fine_label"]
- output_columns = ["label"]
- data_set = data_set.rename(input_columns=input_columns, output_columns=output_columns)
- data_set = data_set.project(["image", "label"])
-
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- random_crop_op = CV.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
- random_horizontal_op = CV.RandomHorizontalFlip()
- resize_op = CV.Resize(image_size) # interpolation default BILINEAR
- rescale_op = CV.Rescale(rescale, shift)
- normalize_op = CV.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
- changeswap_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- c_trans = []
- if training:
- c_trans = [random_crop_op, random_horizontal_op]
- c_trans += [resize_op, rescale_op, normalize_op,
- changeswap_op]
-
- # apply map operations on images
- data_set = data_set.map(input_columns="label", operations=type_cast_op)
- data_set = data_set.map(input_columns="image", operations=c_trans)
-
- # apply shuffle operations
- data_set = data_set.shuffle(buffer_size=1000)
-
- # apply batch operations
- data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
-
- # apply repeat operations
- data_set = data_set.repeat(repeat_num)
- return data_set
-
-
- def create_dataset_imagenet(path, batch_size=32, repeat_size=20, status="train", target="GPU"):
- image_ds = ds.ImageFolderDataset(path, decode=True)
- rescale = 1.0 / 255.0
- shift = 0.0
- cfg = {'num_classes': 10,
- 'learning_rate': 0.002,
- 'momentum': 0.9,
- 'epoch_size': 30,
- 'batch_size': 32,
- 'buffer_size': 1000,
- 'image_height': 224,
- 'image_width': 224,
- 'save_checkpoint_steps': 1562,
- 'keep_checkpoint_max': 10}
- resize_op = CV.Resize((cfg['image_height'], cfg['image_width']))
- rescale_op = CV.Rescale(rescale, shift)
- normalize_op = CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
-
- random_crop_op = CV.RandomCrop([32, 32], [4, 4, 4, 4])
- random_horizontal_op = CV.RandomHorizontalFlip()
- channel_swap_op = CV.HWC2CHW()
- typecast_op = C.TypeCast(mstype.int32)
- image_ds = image_ds.map(input_columns="label", operations=typecast_op, num_parallel_workers=6)
-
- image_ds = image_ds.map(input_columns="image", operations=random_crop_op, num_parallel_workers=6)
- image_ds = image_ds.map(input_columns="image", operations=random_horizontal_op, num_parallel_workers=6)
- image_ds = image_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=6)
- image_ds = image_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=6)
- image_ds = image_ds.map(input_columns="image", operations=normalize_op, num_parallel_workers=6)
- image_ds = image_ds.map(input_columns="image", operations=channel_swap_op, num_parallel_workers=6)
-
- image_ds = image_ds.shuffle(buffer_size=cfg['buffer_size'])
- image_ds = image_ds.repeat(repeat_size)
- return image_ds
-
-
- def create_dataset_cifar(data_path, image_height, image_width, repeat_num=1, training=True):
- """
- create data for next use such as training or infering
- """
- cifar_ds = ds.Cifar10Dataset(data_path)
- resize_height = image_height # 224
- resize_width = image_width # 224
- rescale = 1.0 / 255.0
- shift = 0.0
- batch_size = 32
- # define map operations
- random_crop_op = CV.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
- random_horizontal_op = CV.RandomHorizontalFlip()
- resize_op = CV.Resize((resize_height, resize_width)) # interpolation default BILINEAR
- rescale_op = CV.Rescale(rescale, shift)
- normalize_op = CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
- changeswap_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
- c_trans = []
- if training:
- c_trans = [random_crop_op, random_horizontal_op]
- c_trans += [resize_op, rescale_op, normalize_op,
- changeswap_op]
- # apply map operations on images
- cifar_ds = cifar_ds.map(operations=type_cast_op, input_columns="label")
- cifar_ds = cifar_ds.map(operations=c_trans, input_columns="image")
- # apply shuffle operations
- cifar_ds = cifar_ds.shuffle(buffer_size=10)
- # apply batch operations
- cifar_ds = cifar_ds.batch(batch_size=batch_size, drop_remainder=True)
- # apply repeat operations
- cifar_ds = cifar_ds.repeat(repeat_num)
- return cifar_ds
|