|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """cnnctc eval"""
-
- import numpy as np
- import lmdb
- from mindspore import Tensor, context
- import mindspore.common.dtype as mstype
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.dataset import GeneratorDataset
- from cnn_ctc.src.util import CTCLabelConverter
- from cnn_ctc.src.dataset import iiit_generator_batch, adv_iiit_generator_batch
- from cnn_ctc.src.cnn_ctc import CNNCTC
- from cnn_ctc.src.model_utils.config import config
-
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False,
- save_graphs_path=".")
-
-
- def test_dataset_creator(is_adv=False):
- if is_adv:
- ds = GeneratorDataset(adv_iiit_generator_batch(), ['img', 'label_indices', 'text',
- 'sequence_length', 'label_str'])
- else:
- ds = GeneratorDataset(iiit_generator_batch, ['img', 'label_indices', 'text',
- 'sequence_length', 'label_str'])
- return ds
-
-
- def test(lmdb_save_path):
- """eval cnnctc model on begin and perturb data."""
- target = config.device_target
- context.set_context(device_target=target)
-
- ds = test_dataset_creator(is_adv=config.IS_ADV)
- net = CNNCTC(config.NUM_CLASS, config.HIDDEN_SIZE, config.FINAL_FEATURE_WIDTH)
-
- ckpt_path = config.CHECKPOINT_PATH
- param_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, param_dict)
- print('parameters loaded! from: ', ckpt_path)
-
- converter = CTCLabelConverter(config.CHARACTER)
-
- count = 0
- correct_count = 0
- env_save = lmdb.open(lmdb_save_path, map_size=1099511627776)
- with env_save.begin(write=True) as txn_save:
- for data in ds.create_tuple_iterator():
- img, _, text, _, length = data
-
- img_tensor = Tensor(img, mstype.float32)
-
- model_predict = net(img_tensor)
- model_predict = np.squeeze(model_predict.asnumpy())
-
- preds_size = np.array([model_predict.shape[1]] * config.TEST_BATCH_SIZE)
- preds_index = np.argmax(model_predict, 2)
- preds_index = np.reshape(preds_index, [-1])
- preds_str = converter.decode(preds_index, preds_size)
- label_str = converter.reverse_encode(text.asnumpy(), length.asnumpy())
-
- print("Prediction samples: \n", preds_str[:5])
- print("Ground truth: \n", label_str[:5])
- for pred, label in zip(preds_str, label_str):
- if pred == label:
- correct_count += 1
- count += 1
- if config.IS_ADV:
- pred_key = 'adv_pred-%09d'.encode() % count
- else:
- pred_key = 'pred-%09d'.encode() % count
-
- txn_save.put(pred_key, pred.encode())
- accuracy = correct_count / count
- return accuracy
-
-
- if __name__ == '__main__':
- save_path = config.ADV_TEST_DATASET_PATH
- config.IS_ADV = False
- config.TEST_DATASET_PATH = save_path
- ori_acc = test(lmdb_save_path=save_path)
-
- config.IS_ADV = True
- adv_acc = test(lmdb_save_path=save_path)
- print('Accuracy of benign sample: ', ori_acc)
- print('Accuracy of perturbed sample: ', adv_acc)
|