|
|
@@ -8,29 +8,29 @@ |
|
|
|
|
|
|
|
* 新增说明3:增加基于 TF-IDF(词向量) 特征的文本分类程序。 |
|
|
|
1. 主程序:DfIdfClassifier.java |
|
|
|
2. 效果 |
|
|
|
``` |
|
|
|
CATEGORY nment others |
|
|
|
government 233 46 |
|
|
|
others 110 390 |
|
|
|
准确度: 0.8 |
|
|
|
总共正确数 : 623 |
|
|
|
总数:779 |
|
|
|
``` |
|
|
|
2. 效果如下: |
|
|
|
|
|
|
|
>CATEGORY nment others |
|
|
|
>government 233 46 |
|
|
|
>others 110 390 |
|
|
|
>准确度: 0.8 |
|
|
|
>总共正确数 : 623 |
|
|
|
>总数:779 |
|
|
|
|
|
|
|
* 新增说明2:增加基于 N-Gram(词向量) 特征的文本分类程序,目的是找出自己领域相关的文本,然后再从这个领域相关的文本中判断正负面。 |
|
|
|
|
|
|
|
1. 测试语料:data/text_classification.zip 解压缩即可 |
|
|
|
2. 运行程序:NGramClassifier.java 即可。 |
|
|
|
``` |
|
|
|
效果: |
|
|
|
Total Accuracy=0.9550706033376123 |
|
|
|
95% Confidence Interval=0.9550706033376123 +/- 0.014546897368198444 |
|
|
|
Confusion Matrix |
|
|
|
reference \ response |
|
|
|
government,others |
|
|
|
government 271, 8 |
|
|
|
others 27, 473 |
|
|
|
``` |
|
|
|
3. 效果如下: |
|
|
|
|
|
|
|
>Total Accuracy=0.9550706033376123 |
|
|
|
>95% Confidence Interval=0.9550706033376123 +/- 0.014546897368198444 |
|
|
|
>Confusion Matrix |
|
|
|
>reference \ response |
|
|
|
> government,others |
|
|
|
> government 271, 8 |
|
|
|
> others 27, 473 |
|
|
|
|
|
|
|
* 新增说明1:2015-04-10测试了不用中文分词器,分词之后 LingPipe 情感分类的准确率,同时测试了去除停用词之后的情感分类的准确率。 |
|
|
|
|
|
|
|
|
|
|
|