/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; namespace ZXing.Common { /// /// A simple, fast array of bits, represented compactly by an array of ints internally. /// /// Sean Owen public sealed class BitArray { private int[] bits; private int size; public int Size { get { return size; } } public int SizeInBytes { get { return (size + 7) >> 3; } } public bool this[int i] { get { return (bits[i >> 5] & (1 << (i & 0x1F))) != 0; } set { if (value) bits[i >> 5] |= 1 << (i & 0x1F); } } public BitArray() { this.size = 0; this.bits = new int[1]; } public BitArray(int size) { if (size < 1) { throw new ArgumentException("size must be at least 1"); } this.size = size; this.bits = makeArray(size); } // For testing only private BitArray(int[] bits, int size) { this.bits = bits; this.size = size; } private void ensureCapacity(int size) { if (size > bits.Length << 5) { int[] newBits = makeArray(size); System.Array.Copy(bits, 0, newBits, 0, bits.Length); bits = newBits; } } private static int numberOfTrailingZeros(int num) { var index = (-num & num)%37; if (index < 0) index *= -1; return _lookup[index]; } private static readonly int[] _lookup = { 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18 }; /// Sets a block of 32 bits, starting at bit i. /// /// /// first bit to set /// /// the new value of the next 32 bits. Note again that the least-significant bit /// corresponds to bit i, the next-least-significant to i+1, and so on. /// public void setBulk(int i, int newBits) { bits[i >> 5] = newBits; } /// Clears all bits (sets to false). public void clear() { int max = bits.Length; for (int i = 0; i < max; i++) { bits[i] = 0; } } /// /// Appends the bit. /// /// The bit. public void appendBit(bool bit) { ensureCapacity(size + 1); if (bit) { bits[size >> 5] |= 1 << (size & 0x1F); } size++; } /// underlying array of ints. The first element holds the first 32 bits, and the least /// significant bit is bit 0. /// public int[] Array { get { return bits; } } /// /// Appends the least-significant bits, from value, in order from most-significant to /// least-significant. For example, appending 6 bits from 0x000001E will append the bits /// 0, 1, 1, 1, 1, 0 in that order. /// /// The value. /// The num bits. public void appendBits(int value, int numBits) { if (numBits < 0 || numBits > 32) { throw new ArgumentException("Num bits must be between 0 and 32"); } ensureCapacity(size + numBits); for (int numBitsLeft = numBits; numBitsLeft > 0; numBitsLeft--) { appendBit(((value >> (numBitsLeft - 1)) & 0x01) == 1); } } public void appendBitArray(BitArray other) { int otherSize = other.size; ensureCapacity(size + otherSize); for (int i = 0; i < otherSize; i++) { appendBit(other[i]); } } public void xor(BitArray other) { if (bits.Length != other.bits.Length) { throw new ArgumentException("Sizes don't match"); } for (int i = 0; i < bits.Length; i++) { // The last byte could be incomplete (i.e. not have 8 bits in // it) but there is no problem since 0 XOR 0 == 0. bits[i] ^= other.bits[i]; } } /// /// Toes the bytes. /// /// first bit to start writing /// array to write into. Bytes are written most-significant byte first. This is the opposite /// of the internal representation, which is exposed by BitArray /// position in array to start writing /// how many bytes to write public void toBytes(int bitOffset, byte[] array, int offset, int numBytes) { for (int i = 0; i < numBytes; i++) { int theByte = 0; for (int j = 0; j < 8; j++) { if (this[bitOffset]) { theByte |= 1 << (7 - j); } bitOffset++; } array[offset + i] = (byte)theByte; } } private static int[] makeArray(int size) { return new int[(size + 31) >> 5]; } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public override bool Equals(Object o) { var other = o as BitArray; if (other == null) return false; if (size != other.size) return false; for (var index = 0; index < size; index++) { if (bits[index] != other.bits[index]) return false; } return true; } /// /// Returns a hash code for this instance. /// /// /// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table. /// public override int GetHashCode() { var hash = size; foreach (var bit in bits) { hash = 31 * hash + bit.GetHashCode(); } return hash; } /// /// Erstellt ein neues Objekt, das eine Kopie der aktuellen Instanz darstellt. /// /// /// Ein neues Objekt, das eine Kopie dieser Instanz darstellt. /// public object Clone() { return new BitArray((int[])bits.Clone(), size); } } }