/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Text;
using ZXing.Common;
namespace ZXing.QrCode.Internal
{
///
QR Codes can encode text as bits in one of several modes, and can use multiple modes
/// in one QR Code. This class decodes the bits back into text.
///
///
See ISO 18004:2006, 6.4.3 - 6.4.7
/// Sean Owen
///
internal static class DecodedBitStreamParser
{
///
/// See ISO 18004:2006, 6.4.4 Table 5
///
private static readonly char[] ALPHANUMERIC_CHARS = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
' ', '$', '%', '*', '+', '-', '.', '/', ':'
};
private const int GB2312_SUBSET = 1;
internal static DecoderResult decode(byte[] bytes,
Version version,
ErrorCorrectionLevel ecLevel,
IDictionary hints)
{
var bits = new BitSource(bytes);
var result = new StringBuilder(50);
var byteSegments = new List(1);
var symbolSequence = -1;
var parityData = -1;
try
{
//CharacterSetECI currentCharacterSetECI = null;
bool fc1InEffect = false;
Mode mode;
do
{
// While still another segment to read...
if (bits.available() < 4)
{
// OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
mode = Mode.TERMINATOR;
}
else
{
try
{
mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits
}
catch (ArgumentException)
{
return null;
}
}
if (mode != Mode.TERMINATOR)
{
if (mode == Mode.FNC1_FIRST_POSITION || mode == Mode.FNC1_SECOND_POSITION)
{
// We do little with FNC1 except alter the parsed result a bit according to the spec
fc1InEffect = true;
}
else if (mode == Mode.STRUCTURED_APPEND)
{
if (bits.available() < 16)
{
return null;
}
// not really supported; but sequence number and parity is added later to the result metadata
// Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
symbolSequence = bits.readBits(8);
parityData = bits.readBits(8);
}
else
{
// First handle Hanzi mode which does not start with character count
if (mode == Mode.HANZI)
{
//chinese mode contains a sub set indicator right after mode indicator
//int subset = bits.readBits(4);
//int countHanzi = bits.readBits(mode.getCharacterCountBits(version));
}
else
{
// "Normal" QR code modes:
// How many characters will follow, encoded in this mode?
int count = bits.readBits(mode.getCharacterCountBits(version));
if (mode == Mode.NUMERIC)
{
if (!decodeNumericSegment(bits, result, count))
return null;
}
else if (mode == Mode.ALPHANUMERIC)
{
if (!decodeAlphanumericSegment(bits, result, count, fc1InEffect))
return null;
}
else
{
return null;
}
}
}
}
} while (mode != Mode.TERMINATOR);
}
catch (ArgumentException)
{
// from readBits() calls
return null;
}
#if WindowsCE
var resultString = result.ToString().Replace("\n", "\r\n");
#else
var resultString = result.ToString().Replace("\r\n", "\n").Replace("\n", Environment.NewLine);
#endif
return new DecoderResult(bytes,
resultString,
byteSegments.Count == 0 ? null : byteSegments,
ecLevel == null ? null : ecLevel.ToString(),
symbolSequence, parityData);
}
private static char toAlphaNumericChar(int value)
{
if (value >= ALPHANUMERIC_CHARS.Length)
{
//throw FormatException.Instance;
}
return ALPHANUMERIC_CHARS[value];
}
private static bool decodeAlphanumericSegment(BitSource bits,
StringBuilder result,
int count,
bool fc1InEffect)
{
// Read two characters at a time
int start = result.Length;
while (count > 1)
{
if (bits.available() < 11)
{
return false;
}
int nextTwoCharsBits = bits.readBits(11);
result.Append(toAlphaNumericChar(nextTwoCharsBits / 45));
result.Append(toAlphaNumericChar(nextTwoCharsBits % 45));
count -= 2;
}
if (count == 1)
{
// special case: one character left
if (bits.available() < 6)
{
return false;
}
result.Append(toAlphaNumericChar(bits.readBits(6)));
}
// See section 6.4.8.1, 6.4.8.2
if (fc1InEffect)
{
// We need to massage the result a bit if in an FNC1 mode:
for (int i = start; i < result.Length; i++)
{
if (result[i] == '%')
{
if (i < result.Length - 1 && result[i + 1] == '%')
{
// %% is rendered as %
result.Remove(i + 1, 1);
}
else
{
// In alpha mode, % should be converted to FNC1 separator 0x1D
result.Remove(i, 1);
result.Insert(i, new[] { (char)0x1D });
}
}
}
}
return true;
}
private static bool decodeNumericSegment(BitSource bits,
StringBuilder result,
int count)
{
// Read three digits at a time
while (count >= 3)
{
// Each 10 bits encodes three digits
if (bits.available() < 10)
{
return false;
}
int threeDigitsBits = bits.readBits(10);
if (threeDigitsBits >= 1000)
{
return false;
}
result.Append(toAlphaNumericChar(threeDigitsBits / 100));
result.Append(toAlphaNumericChar((threeDigitsBits / 10) % 10));
result.Append(toAlphaNumericChar(threeDigitsBits % 10));
count -= 3;
}
if (count == 2)
{
// Two digits left over to read, encoded in 7 bits
if (bits.available() < 7)
{
return false;
}
int twoDigitsBits = bits.readBits(7);
if (twoDigitsBits >= 100)
{
return false;
}
result.Append(toAlphaNumericChar(twoDigitsBits / 10));
result.Append(toAlphaNumericChar(twoDigitsBits % 10));
}
else if (count == 1)
{
// One digit left over to read
if (bits.available() < 4)
{
return false;
}
int digitBits = bits.readBits(4);
if (digitBits >= 10)
{
return false;
}
result.Append(toAlphaNumericChar(digitBits));
}
return true;
}
private static int parseECIValue(BitSource bits)
{
int firstByte = bits.readBits(8);
if ((firstByte & 0x80) == 0)
{
// just one byte
return firstByte & 0x7F;
}
if ((firstByte & 0xC0) == 0x80)
{
// two bytes
int secondByte = bits.readBits(8);
return ((firstByte & 0x3F) << 8) | secondByte;
}
if ((firstByte & 0xE0) == 0xC0)
{
// three bytes
int secondThirdBytes = bits.readBits(16);
return ((firstByte & 0x1F) << 16) | secondThirdBytes;
}
throw new ArgumentException("Bad ECI bits starting with byte " + firstByte);
}
}
}