/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using System.Text; using ZXing.Common; namespace ZXing.QrCode.Internal { ///

QR Codes can encode text as bits in one of several modes, and can use multiple modes /// in one QR Code. This class decodes the bits back into text.

/// ///

See ISO 18004:2006, 6.4.3 - 6.4.7

/// Sean Owen ///
internal static class DecodedBitStreamParser { /// /// See ISO 18004:2006, 6.4.4 Table 5 /// private static readonly char[] ALPHANUMERIC_CHARS = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', ' ', '$', '%', '*', '+', '-', '.', '/', ':' }; private const int GB2312_SUBSET = 1; internal static DecoderResult decode(byte[] bytes, Version version, ErrorCorrectionLevel ecLevel, IDictionary hints) { var bits = new BitSource(bytes); var result = new StringBuilder(50); var byteSegments = new List(1); var symbolSequence = -1; var parityData = -1; try { //CharacterSetECI currentCharacterSetECI = null; bool fc1InEffect = false; Mode mode; do { // While still another segment to read... if (bits.available() < 4) { // OK, assume we're done. Really, a TERMINATOR mode should have been recorded here mode = Mode.TERMINATOR; } else { try { mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits } catch (ArgumentException) { return null; } } if (mode != Mode.TERMINATOR) { if (mode == Mode.FNC1_FIRST_POSITION || mode == Mode.FNC1_SECOND_POSITION) { // We do little with FNC1 except alter the parsed result a bit according to the spec fc1InEffect = true; } else if (mode == Mode.STRUCTURED_APPEND) { if (bits.available() < 16) { return null; } // not really supported; but sequence number and parity is added later to the result metadata // Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue symbolSequence = bits.readBits(8); parityData = bits.readBits(8); } else { // First handle Hanzi mode which does not start with character count if (mode == Mode.HANZI) { //chinese mode contains a sub set indicator right after mode indicator //int subset = bits.readBits(4); //int countHanzi = bits.readBits(mode.getCharacterCountBits(version)); } else { // "Normal" QR code modes: // How many characters will follow, encoded in this mode? int count = bits.readBits(mode.getCharacterCountBits(version)); if (mode == Mode.NUMERIC) { if (!decodeNumericSegment(bits, result, count)) return null; } else if (mode == Mode.ALPHANUMERIC) { if (!decodeAlphanumericSegment(bits, result, count, fc1InEffect)) return null; } else { return null; } } } } } while (mode != Mode.TERMINATOR); } catch (ArgumentException) { // from readBits() calls return null; } #if WindowsCE var resultString = result.ToString().Replace("\n", "\r\n"); #else var resultString = result.ToString().Replace("\r\n", "\n").Replace("\n", Environment.NewLine); #endif return new DecoderResult(bytes, resultString, byteSegments.Count == 0 ? null : byteSegments, ecLevel == null ? null : ecLevel.ToString(), symbolSequence, parityData); } private static char toAlphaNumericChar(int value) { if (value >= ALPHANUMERIC_CHARS.Length) { //throw FormatException.Instance; } return ALPHANUMERIC_CHARS[value]; } private static bool decodeAlphanumericSegment(BitSource bits, StringBuilder result, int count, bool fc1InEffect) { // Read two characters at a time int start = result.Length; while (count > 1) { if (bits.available() < 11) { return false; } int nextTwoCharsBits = bits.readBits(11); result.Append(toAlphaNumericChar(nextTwoCharsBits / 45)); result.Append(toAlphaNumericChar(nextTwoCharsBits % 45)); count -= 2; } if (count == 1) { // special case: one character left if (bits.available() < 6) { return false; } result.Append(toAlphaNumericChar(bits.readBits(6))); } // See section 6.4.8.1, 6.4.8.2 if (fc1InEffect) { // We need to massage the result a bit if in an FNC1 mode: for (int i = start; i < result.Length; i++) { if (result[i] == '%') { if (i < result.Length - 1 && result[i + 1] == '%') { // %% is rendered as % result.Remove(i + 1, 1); } else { // In alpha mode, % should be converted to FNC1 separator 0x1D result.Remove(i, 1); result.Insert(i, new[] { (char)0x1D }); } } } } return true; } private static bool decodeNumericSegment(BitSource bits, StringBuilder result, int count) { // Read three digits at a time while (count >= 3) { // Each 10 bits encodes three digits if (bits.available() < 10) { return false; } int threeDigitsBits = bits.readBits(10); if (threeDigitsBits >= 1000) { return false; } result.Append(toAlphaNumericChar(threeDigitsBits / 100)); result.Append(toAlphaNumericChar((threeDigitsBits / 10) % 10)); result.Append(toAlphaNumericChar(threeDigitsBits % 10)); count -= 3; } if (count == 2) { // Two digits left over to read, encoded in 7 bits if (bits.available() < 7) { return false; } int twoDigitsBits = bits.readBits(7); if (twoDigitsBits >= 100) { return false; } result.Append(toAlphaNumericChar(twoDigitsBits / 10)); result.Append(toAlphaNumericChar(twoDigitsBits % 10)); } else if (count == 1) { // One digit left over to read if (bits.available() < 4) { return false; } int digitBits = bits.readBits(4); if (digitBits >= 10) { return false; } result.Append(toAlphaNumericChar(digitBits)); } return true; } private static int parseECIValue(BitSource bits) { int firstByte = bits.readBits(8); if ((firstByte & 0x80) == 0) { // just one byte return firstByte & 0x7F; } if ((firstByte & 0xC0) == 0x80) { // two bytes int secondByte = bits.readBits(8); return ((firstByte & 0x3F) << 8) | secondByte; } if ((firstByte & 0xE0) == 0xC0) { // three bytes int secondThirdBytes = bits.readBits(16); return ((firstByte & 0x1F) << 16) | secondThirdBytes; } throw new ArgumentException("Bad ECI bits starting with byte " + firstByte); } } }