/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Text; namespace ZXing.Common.ReedSolomon { /// ///

Represents a polynomial whose coefficients are elements of a GF. /// Instances of this class are immutable.

///

Much credit is due to William Rucklidge since portions of this code are an indirect /// port of his C++ Reed-Solomon implementation.

///
/// Sean Owen internal sealed class GenericGFPoly { private readonly GenericGF field; private readonly int[] coefficients; /// /// Initializes a new instance of the class. /// /// the {@link GenericGF} instance representing the field to use /// to perform computations /// coefficients as ints representing elements of GF(size), arranged /// from most significant (highest-power term) coefficient to least significant /// if argument is null or empty, /// or if leading coefficient is 0 and this is not a /// constant polynomial (that is, it is not the monomial "0") internal GenericGFPoly(GenericGF field, int[] coefficients) { if (coefficients.Length == 0) { throw new ArgumentException(); } this.field = field; int coefficientsLength = coefficients.Length; if (coefficientsLength > 1 && coefficients[0] == 0) { // Leading term must be non-zero for anything except the constant polynomial "0" int firstNonZero = 1; while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0) { firstNonZero++; } if (firstNonZero == coefficientsLength) { this.coefficients = new int[]{0}; } else { this.coefficients = new int[coefficientsLength - firstNonZero]; Array.Copy(coefficients, firstNonZero, this.coefficients, 0, this.coefficients.Length); } } else { this.coefficients = coefficients; } } internal int[] Coefficients { get { return coefficients; } } /// /// degree of this polynomial /// internal int Degree { get { return coefficients.Length - 1; } } /// /// Gets a value indicating whether this is zero. /// /// true iff this polynomial is the monomial "0" internal bool isZero { get { return coefficients[0] == 0; } } /// /// coefficient of x^degree term in this polynomial /// /// The degree. /// coefficient of x^degree term in this polynomial internal int getCoefficient(int degree) { return coefficients[coefficients.Length - 1 - degree]; } internal GenericGFPoly addOrSubtract(GenericGFPoly other) { if (!field.Equals(other.field)) { throw new ArgumentException("GenericGFPolys do not have same GenericGF field"); } if (isZero) { return other; } if (other.isZero) { return this; } int[] smallerCoefficients = this.coefficients; int[] largerCoefficients = other.coefficients; if (smallerCoefficients.Length > largerCoefficients.Length) { int[] temp = smallerCoefficients; smallerCoefficients = largerCoefficients; largerCoefficients = temp; } int[] sumDiff = new int[largerCoefficients.Length]; int lengthDiff = largerCoefficients.Length - smallerCoefficients.Length; // Copy high-order terms only found in higher-degree polynomial's coefficients Array.Copy(largerCoefficients, 0, sumDiff, 0, lengthDiff); for (int i = lengthDiff; i < largerCoefficients.Length; i++) { sumDiff[i] = GenericGF.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]); } return new GenericGFPoly(field, sumDiff); } internal GenericGFPoly multiply(GenericGFPoly other) { if (!field.Equals(other.field)) { throw new ArgumentException("GenericGFPolys do not have same GenericGF field"); } if (isZero || other.isZero) { return field.Zero; } int[] aCoefficients = this.coefficients; int aLength = aCoefficients.Length; int[] bCoefficients = other.coefficients; int bLength = bCoefficients.Length; int[] product = new int[aLength + bLength - 1]; for (int i = 0; i < aLength; i++) { int aCoeff = aCoefficients[i]; for (int j = 0; j < bLength; j++) { product[i + j] = GenericGF.addOrSubtract(product[i + j], field.multiply(aCoeff, bCoefficients[j])); } } return new GenericGFPoly(field, product); } internal GenericGFPoly multiplyByMonomial(int degree, int coefficient) { if (degree < 0) { throw new ArgumentException(); } if (coefficient == 0) { return field.Zero; } int size = coefficients.Length; int[] product = new int[size + degree]; for (int i = 0; i < size; i++) { product[i] = field.multiply(coefficients[i], coefficient); } return new GenericGFPoly(field, product); } internal GenericGFPoly[] divide(GenericGFPoly other) { if (!field.Equals(other.field)) { throw new ArgumentException("GenericGFPolys do not have same GenericGF field"); } if (other.isZero) { throw new ArgumentException("Divide by 0"); } GenericGFPoly quotient = field.Zero; GenericGFPoly remainder = this; int denominatorLeadingTerm = other.getCoefficient(other.Degree); int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm); while (remainder.Degree >= other.Degree && !remainder.isZero) { int degreeDifference = remainder.Degree - other.Degree; int scale = field.multiply(remainder.getCoefficient(remainder.Degree), inverseDenominatorLeadingTerm); GenericGFPoly term = other.multiplyByMonomial(degreeDifference, scale); GenericGFPoly iterationQuotient = field.buildMonomial(degreeDifference, scale); quotient = quotient.addOrSubtract(iterationQuotient); remainder = remainder.addOrSubtract(term); } return new GenericGFPoly[] { quotient, remainder }; } } }