/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Text;
namespace ZXing.Common.ReedSolomon
{
///
///
Represents a polynomial whose coefficients are elements of a GF.
/// Instances of this class are immutable.
///
Much credit is due to William Rucklidge since portions of this code are an indirect
/// port of his C++ Reed-Solomon implementation.
///
/// Sean Owen
internal sealed class GenericGFPoly
{
private readonly GenericGF field;
private readonly int[] coefficients;
///
/// Initializes a new instance of the class.
///
/// the {@link GenericGF} instance representing the field to use
/// to perform computations
/// coefficients as ints representing elements of GF(size), arranged
/// from most significant (highest-power term) coefficient to least significant
/// if argument is null or empty,
/// or if leading coefficient is 0 and this is not a
/// constant polynomial (that is, it is not the monomial "0")
internal GenericGFPoly(GenericGF field, int[] coefficients)
{
if (coefficients.Length == 0)
{
throw new ArgumentException();
}
this.field = field;
int coefficientsLength = coefficients.Length;
if (coefficientsLength > 1 && coefficients[0] == 0)
{
// Leading term must be non-zero for anything except the constant polynomial "0"
int firstNonZero = 1;
while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0)
{
firstNonZero++;
}
if (firstNonZero == coefficientsLength)
{
this.coefficients = new int[]{0};
}
else
{
this.coefficients = new int[coefficientsLength - firstNonZero];
Array.Copy(coefficients,
firstNonZero,
this.coefficients,
0,
this.coefficients.Length);
}
}
else
{
this.coefficients = coefficients;
}
}
internal int[] Coefficients
{
get { return coefficients; }
}
///
/// degree of this polynomial
///
internal int Degree
{
get
{
return coefficients.Length - 1;
}
}
///
/// Gets a value indicating whether this is zero.
///
/// true iff this polynomial is the monomial "0"
internal bool isZero
{
get { return coefficients[0] == 0; }
}
///
/// coefficient of x^degree term in this polynomial
///
/// The degree.
/// coefficient of x^degree term in this polynomial
internal int getCoefficient(int degree)
{
return coefficients[coefficients.Length - 1 - degree];
}
internal GenericGFPoly addOrSubtract(GenericGFPoly other)
{
if (!field.Equals(other.field))
{
throw new ArgumentException("GenericGFPolys do not have same GenericGF field");
}
if (isZero)
{
return other;
}
if (other.isZero)
{
return this;
}
int[] smallerCoefficients = this.coefficients;
int[] largerCoefficients = other.coefficients;
if (smallerCoefficients.Length > largerCoefficients.Length)
{
int[] temp = smallerCoefficients;
smallerCoefficients = largerCoefficients;
largerCoefficients = temp;
}
int[] sumDiff = new int[largerCoefficients.Length];
int lengthDiff = largerCoefficients.Length - smallerCoefficients.Length;
// Copy high-order terms only found in higher-degree polynomial's coefficients
Array.Copy(largerCoefficients, 0, sumDiff, 0, lengthDiff);
for (int i = lengthDiff; i < largerCoefficients.Length; i++)
{
sumDiff[i] = GenericGF.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]);
}
return new GenericGFPoly(field, sumDiff);
}
internal GenericGFPoly multiply(GenericGFPoly other)
{
if (!field.Equals(other.field))
{
throw new ArgumentException("GenericGFPolys do not have same GenericGF field");
}
if (isZero || other.isZero)
{
return field.Zero;
}
int[] aCoefficients = this.coefficients;
int aLength = aCoefficients.Length;
int[] bCoefficients = other.coefficients;
int bLength = bCoefficients.Length;
int[] product = new int[aLength + bLength - 1];
for (int i = 0; i < aLength; i++)
{
int aCoeff = aCoefficients[i];
for (int j = 0; j < bLength; j++)
{
product[i + j] = GenericGF.addOrSubtract(product[i + j],
field.multiply(aCoeff, bCoefficients[j]));
}
}
return new GenericGFPoly(field, product);
}
internal GenericGFPoly multiplyByMonomial(int degree, int coefficient)
{
if (degree < 0)
{
throw new ArgumentException();
}
if (coefficient == 0)
{
return field.Zero;
}
int size = coefficients.Length;
int[] product = new int[size + degree];
for (int i = 0; i < size; i++)
{
product[i] = field.multiply(coefficients[i], coefficient);
}
return new GenericGFPoly(field, product);
}
internal GenericGFPoly[] divide(GenericGFPoly other)
{
if (!field.Equals(other.field))
{
throw new ArgumentException("GenericGFPolys do not have same GenericGF field");
}
if (other.isZero)
{
throw new ArgumentException("Divide by 0");
}
GenericGFPoly quotient = field.Zero;
GenericGFPoly remainder = this;
int denominatorLeadingTerm = other.getCoefficient(other.Degree);
int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm);
while (remainder.Degree >= other.Degree && !remainder.isZero)
{
int degreeDifference = remainder.Degree - other.Degree;
int scale = field.multiply(remainder.getCoefficient(remainder.Degree), inverseDenominatorLeadingTerm);
GenericGFPoly term = other.multiplyByMonomial(degreeDifference, scale);
GenericGFPoly iterationQuotient = field.buildMonomial(degreeDifference, scale);
quotient = quotient.addOrSubtract(iterationQuotient);
remainder = remainder.addOrSubtract(term);
}
return new GenericGFPoly[] { quotient, remainder };
}
}
}