/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; namespace ZXing.Common.ReedSolomon { /// ///

This class contains utility methods for performing mathematical operations over /// the Galois Fields. Operations use a given primitive polynomial in calculations.

///

Throughout this package, elements of the GF are represented as an {@code int} /// for convenience and speed (but at the cost of memory). ///

///
/// Sean Owen public sealed class GenericGF { public static GenericGF AZTEC_DATA_12 = new GenericGF(0x1069, 4096, 1); // x^12 + x^6 + x^5 + x^3 + 1 public static GenericGF AZTEC_DATA_10 = new GenericGF(0x409, 1024, 1); // x^10 + x^3 + 1 public static GenericGF AZTEC_DATA_6 = new GenericGF(0x43, 64, 1); // x^6 + x + 1 public static GenericGF AZTEC_PARAM = new GenericGF(0x13, 16, 1); // x^4 + x + 1 public static GenericGF QR_CODE_FIELD_256 = new GenericGF(0x011D, 256, 0); // x^8 + x^4 + x^3 + x^2 + 1 public static GenericGF DATA_MATRIX_FIELD_256 = new GenericGF(0x012D, 256, 1); // x^8 + x^5 + x^3 + x^2 + 1 public static GenericGF AZTEC_DATA_8 = DATA_MATRIX_FIELD_256; public static GenericGF MAXICODE_FIELD_64 = AZTEC_DATA_6; private const int INITIALIZATION_THRESHOLD = 0; private int[] expTable; private int[] logTable; private GenericGFPoly zero; private GenericGFPoly one; private readonly int size; private readonly int primitive; private readonly int generatorBase; private bool initialized = false; /// /// Create a representation of GF(size) using the given primitive polynomial. /// /// irreducible polynomial whose coefficients are represented by /// * the bits of an int, where the least-significant bit represents the constant /// * coefficient /// the size of the field /// the factor b in the generator polynomial can be 0- or 1-based /// * (g(x) = (x+a^b)(x+a^(b+1))...(x+a^(b+2t-1))). /// * In most cases it should be 1, but for QR code it is 0. public GenericGF(int primitive, int size, int genBase) { this.primitive = primitive; this.size = size; this.generatorBase = genBase; if (size <= INITIALIZATION_THRESHOLD) { initialize(); } } private void initialize() { expTable = new int[size]; logTable = new int[size]; int x = 1; for (int i = 0; i < size; i++) { expTable[i] = x; x <<= 1; // x = x * 2; we're assuming the generator alpha is 2 if (x >= size) { x ^= primitive; x &= size - 1; } } for (int i = 0; i < size - 1; i++) { logTable[expTable[i]] = i; } // logTable[0] == 0 but this should never be used zero = new GenericGFPoly(this, new int[] { 0 }); one = new GenericGFPoly(this, new int[] { 1 }); initialized = true; } private void checkInit() { if (!initialized) { initialize(); } } internal GenericGFPoly Zero { get { checkInit(); return zero; } } internal GenericGFPoly One { get { checkInit(); return one; } } /// /// Builds the monomial. /// /// The degree. /// The coefficient. /// the monomial representing coefficient * x^degree internal GenericGFPoly buildMonomial(int degree, int coefficient) { checkInit(); if (degree < 0) { throw new ArgumentException(); } if (coefficient == 0) { return zero; } int[] coefficients = new int[degree + 1]; coefficients[0] = coefficient; return new GenericGFPoly(this, coefficients); } /// /// Implements both addition and subtraction -- they are the same in GF(size). /// /// sum/difference of a and b static internal int addOrSubtract(int a, int b) { return a ^ b; } /// /// Exps the specified a. /// /// 2 to the power of a in GF(size) internal int exp(int a) { checkInit(); return expTable[a]; } /// /// Logs the specified a. /// /// A. /// base 2 log of a in GF(size) internal int log(int a) { checkInit(); if (a == 0) { throw new ArgumentException(); } return logTable[a]; } /// /// Inverses the specified a. /// /// multiplicative inverse of a internal int inverse(int a) { checkInit(); if (a == 0) { throw new ArithmeticException(); } return expTable[size - logTable[a] - 1]; } /// /// Multiplies the specified a with b. /// /// A. /// The b. /// product of a and b in GF(size) internal int multiply(int a, int b) { checkInit(); if (a == 0 || b == 0) { return 0; } return expTable[(logTable[a] + logTable[b]) % (size - 1)]; } /// /// Gets the size. /// public int Size { get { return size; } } /// /// Gets the generator base. /// public int GeneratorBase { get { return generatorBase; } } /// /// Returns a that represents this instance. /// /// /// A that represents this instance. /// override public String ToString() { return "GF(0x" + primitive.ToString("X") + ',' + size + ')'; } } }