/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using ZXing.Common; namespace ZXing.QrCode.Internal { ///

This class attempts to find alignment patterns in a QR Code. Alignment patterns look like finder /// patterns but are smaller and appear at regular intervals throughout the image.

/// ///

At the moment this only looks for the bottom-right alignment pattern.

/// ///

This is mostly a simplified copy of {@link FinderPatternFinder}. It is copied, /// pasted and stripped down here for maximum performance but does unfortunately duplicate /// some code.

/// ///

This class is thread-safe but not reentrant. Each thread must allocate its own object.

/// ///
/// Sean Owen /// /// www.Redivivus.in (suraj.supekar@redivivus.in) - Ported from ZXING Java Source /// sealed class AlignmentPatternFinder { private readonly BitMatrix image; private readonly IList possibleCenters; private readonly int startX; private readonly int startY; private readonly int width; private readonly int height; private readonly float moduleSize; private readonly int[] crossCheckStateCount; private readonly ResultPointCallback resultPointCallback; ///

Creates a finder that will look in a portion of the whole image.

/// ///
/// image to search /// /// left column from which to start searching /// /// top row from which to start searching /// /// width of region to search /// /// height of region to search /// /// estimated module size so far /// internal AlignmentPatternFinder(BitMatrix image, int startX, int startY, int width, int height, float moduleSize, ResultPointCallback resultPointCallback) { this.image = image; this.possibleCenters = new List(5); this.startX = startX; this.startY = startY; this.width = width; this.height = height; this.moduleSize = moduleSize; this.crossCheckStateCount = new int[3]; this.resultPointCallback = resultPointCallback; } ///

This method attempts to find the bottom-right alignment pattern in the image. It is a bit messy since /// it's pretty performance-critical and so is written to be fast foremost.

/// ///
/// {@link AlignmentPattern} if found /// internal AlignmentPattern find() { int startX = this.startX; int height = this.height; int maxJ = startX + width; int middleI = startY + (height >> 1); // We are looking for black/white/black modules in 1:1:1 ratio; // this tracks the number of black/white/black modules seen so far int[] stateCount = new int[3]; for (int iGen = 0; iGen < height; iGen++) { // Search from middle outwards int i = middleI + ((iGen & 0x01) == 0 ? ((iGen + 1) >> 1) : -((iGen + 1) >> 1)); stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; int j = startX; // Burn off leading white pixels before anything else; if we start in the middle of // a white run, it doesn't make sense to count its length, since we don't know if the // white run continued to the left of the start point while (j < maxJ && !image[j, i]) { j++; } int currentState = 0; while (j < maxJ) { if (image[j, i]) { // Black pixel if (currentState == 1) { // Counting black pixels stateCount[currentState]++; } else { // Counting white pixels if (currentState == 2) { // A winner? if (foundPatternCross(stateCount)) { // Yes AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, j); if (confirmed != null) { return confirmed; } } stateCount[0] = stateCount[2]; stateCount[1] = 1; stateCount[2] = 0; currentState = 1; } else { stateCount[++currentState]++; } } } else { // White pixel if (currentState == 1) { // Counting black pixels currentState++; } stateCount[currentState]++; } j++; } if (foundPatternCross(stateCount)) { AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, maxJ); if (confirmed != null) { return confirmed; } } } // Hmm, nothing we saw was observed and confirmed twice. If we had // any guess at all, return it. if (possibleCenters.Count != 0) { return possibleCenters[0]; } return null; } /// Given a count of black/white/black pixels just seen and an end position, /// figures the location of the center of this black/white/black run. /// private static float? centerFromEnd(int[] stateCount, int end) { var result = (end - stateCount[2]) - stateCount[1] / 2.0f; if (Single.IsNaN(result)) return null; return result; } /// count of black/white/black pixels just read /// /// true iff the proportions of the counts is close enough to the 1/1/1 ratios /// used by alignment patterns to be considered a match /// private bool foundPatternCross(int[] stateCount) { float maxVariance = moduleSize / 2.0f; for (int i = 0; i < 3; i++) { if (Math.Abs(moduleSize - stateCount[i]) >= maxVariance) { return false; } } return true; } /// ///

After a horizontal scan finds a potential alignment pattern, this method /// "cross-checks" by scanning down vertically through the center of the possible /// alignment pattern to see if the same proportion is detected.

///
/// row where an alignment pattern was detected /// center of the section that appears to cross an alignment pattern /// maximum reasonable number of modules that should be /// observed in any reading state, based on the results of the horizontal scan /// The original state count total. /// /// vertical center of alignment pattern, or null if not found /// private float? crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int[] stateCount = crossCheckStateCount; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; // Start counting up from center int i = startI; while (i >= 0 && image[centerJ, i] && stateCount[1] <= maxCount) { stateCount[1]++; i--; } // If already too many modules in this state or ran off the edge: if (i < 0 || stateCount[1] > maxCount) { return null; } while (i >= 0 && !image[centerJ, i] && stateCount[0] <= maxCount) { stateCount[0]++; i--; } if (stateCount[0] > maxCount) { return null; } // Now also count down from center i = startI + 1; while (i < maxI && image[centerJ, i] && stateCount[1] <= maxCount) { stateCount[1]++; i++; } if (i == maxI || stateCount[1] > maxCount) { return null; } while (i < maxI && !image[centerJ, i] && stateCount[2] <= maxCount) { stateCount[2]++; i++; } if (stateCount[2] > maxCount) { return null; } int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : null; } ///

This is called when a horizontal scan finds a possible alignment pattern. It will /// cross check with a vertical scan, and if successful, will see if this pattern had been /// found on a previous horizontal scan. If so, we consider it confirmed and conclude we have /// found the alignment pattern.

/// ///
/// reading state module counts from horizontal scan /// /// row where alignment pattern may be found /// /// end of possible alignment pattern in row /// /// {@link AlignmentPattern} if we have found the same pattern twice, or null if not /// private AlignmentPattern handlePossibleCenter(int[] stateCount, int i, int j) { int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2]; float? centerJ = centerFromEnd(stateCount, j); if (centerJ == null) return null; float? centerI = crossCheckVertical(i, (int)centerJ, 2 * stateCount[1], stateCountTotal); if (centerI != null) { float estimatedModuleSize = (stateCount[0] + stateCount[1] + stateCount[2]) / 3.0f; foreach (var center in possibleCenters) { // Look for about the same center and module size: if (center.aboutEquals(estimatedModuleSize, centerI.Value, centerJ.Value)) { return center.combineEstimate(centerI.Value, centerJ.Value, estimatedModuleSize); } } // Hadn't found this before; save it var point = new AlignmentPattern(centerJ.Value, centerI.Value, estimatedModuleSize); possibleCenters.Add(point); if (resultPointCallback != null) { resultPointCallback(point); } } return null; } } }