hints)
{
bool tryHarder = hints != null && hints.ContainsKey(DecodeHintType.TRY_HARDER);
bool pureBarcode = hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE);
int maxI = image.Height;
int maxJ = image.Width;
// We are looking for black/white/black/white/black modules in
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
// Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
// image, and then account for the center being 3 modules in size. This gives the smallest
// number of pixels the center could be, so skip this often. When trying harder, look for all
// QR versions regardless of how dense they are.
int iSkip = (3 * maxI) / (4 * MAX_MODULES);
if (iSkip < MIN_SKIP || tryHarder)
{
iSkip = MIN_SKIP;
}
bool done = false;
int[] stateCount = new int[5];
for (int i = iSkip - 1; i < maxI && !done; i += iSkip)
{
// Get a row of black/white values
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
int currentState = 0;
for (int j = 0; j < maxJ; j++)
{
if (image[j, i])
{
// Black pixel
if ((currentState & 1) == 1)
{
// Counting white pixels
currentState++;
}
stateCount[currentState]++;
}
else
{
// White pixel
if ((currentState & 1) == 0)
{
// Counting black pixels
if (currentState == 4)
{
// A winner?
if (foundPatternCross(stateCount))
{
// Yes
bool confirmed = handlePossibleCenter(stateCount, i, j, pureBarcode);
if (confirmed)
{
// Start examining every other line. Checking each line turned out to be too
// expensive and didn't improve performance.
iSkip = 2;
if (hasSkipped)
{
done = haveMultiplyConfirmedCenters();
}
else
{
int rowSkip = findRowSkip();
if (rowSkip > stateCount[2])
{
// Skip rows between row of lower confirmed center
// and top of presumed third confirmed center
// but back up a bit to get a full chance of detecting
// it, entire width of center of finder pattern
// Skip by rowSkip, but back off by stateCount[2] (size of last center
// of pattern we saw) to be conservative, and also back off by iSkip which
// is about to be re-added
i += rowSkip - stateCount[2] - iSkip;
j = maxJ - 1;
}
}
}
else
{
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
continue;
}
// Clear state to start looking again
currentState = 0;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
}
else
{
// No, shift counts back by two
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
}
}
else
{
stateCount[++currentState]++;
}
}
else
{
// Counting white pixels
stateCount[currentState]++;
}
}
}
if (foundPatternCross(stateCount))
{
bool confirmed = handlePossibleCenter(stateCount, i, maxJ, pureBarcode);
if (confirmed)
{
iSkip = stateCount[0];
if (hasSkipped)
{
// Found a third one
done = haveMultiplyConfirmedCenters();
}
}
}
}
FinderPattern[] patternInfo = selectBestPatterns();
if (patternInfo == null)
return null;
ResultPoint.orderBestPatterns(patternInfo);
return new FinderPatternInfo(patternInfo);
}
/// Given a count of black/white/black/white/black pixels just seen and an end position,
/// figures the location of the center of this run.
///
private static float? centerFromEnd(int[] stateCount, int end)
{
var result = (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;
if (Single.IsNaN(result))
return null;
return result;
}
/// count of black/white/black/white/black pixels just read
///
/// true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios
/// used by finder patterns to be considered a match
///
protected internal static bool foundPatternCross(int[] stateCount)
{
int totalModuleSize = 0;
for (int i = 0; i < 5; i++)
{
int count = stateCount[i];
if (count == 0)
{
return false;
}
totalModuleSize += count;
}
if (totalModuleSize < 7)
{
return false;
}
int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7;
int maxVariance = moduleSize / 2;
// Allow less than 50% variance from 1-1-3-1-1 proportions
return Math.Abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance &&
Math.Abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance &&
Math.Abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance &&
Math.Abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance &&
Math.Abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance;
}
private int[] CrossCheckStateCount
{
get
{
crossCheckStateCount[0] = 0;
crossCheckStateCount[1] = 0;
crossCheckStateCount[2] = 0;
crossCheckStateCount[3] = 0;
crossCheckStateCount[4] = 0;
return crossCheckStateCount;
}
}
///
/// After a vertical and horizontal scan finds a potential finder pattern, this method
/// "cross-cross-cross-checks" by scanning down diagonally through the center of the possible
/// finder pattern to see if the same proportion is detected.
///
/// row where a finder pattern was detected
/// center of the section that appears to cross a finder pattern
/// maximum reasonable number of modules that should be observed in any reading state, based on the results of the horizontal scan
/// The original state count total.
/// true if proportions are withing expected limits
private bool crossCheckDiagonal(int startI, int centerJ, int maxCount, int originalStateCountTotal)
{
int maxI = image.Height;
int maxJ = image.Width;
int[] stateCount = CrossCheckStateCount;
// Start counting up, left from center finding black center mass
int i = 0;
while (startI - i >= 0 && image[centerJ - i, startI - i])
{
stateCount[2]++;
i++;
}
if ((startI - i < 0) || (centerJ - i < 0))
{
return false;
}
// Continue up, left finding white space
while ((startI - i >= 0) && (centerJ - i >= 0) && !image[centerJ - i, startI - i] && stateCount[1] <= maxCount)
{
stateCount[1]++;
i++;
}
// If already too many modules in this state or ran off the edge:
if ((startI - i < 0) || (centerJ - i < 0) || stateCount[1] > maxCount)
{
return false;
}
// Continue up, left finding black border
while ((startI - i >= 0) && (centerJ - i >= 0) && image[centerJ - i, startI - i] && stateCount[0] <= maxCount)
{
stateCount[0]++;
i++;
}
if (stateCount[0] > maxCount)
{
return false;
}
// Now also count down, right from center
i = 1;
while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i])
{
stateCount[2]++;
i++;
}
// Ran off the edge?
if ((startI + i >= maxI) || (centerJ + i >= maxJ))
{
return false;
}
while ((startI + i < maxI) && (centerJ + i < maxJ) && !image[centerJ + i, startI + i] && stateCount[3] < maxCount)
{
stateCount[3]++;
i++;
}
if ((startI + i >= maxI) || (centerJ + i >= maxJ) || stateCount[3] >= maxCount)
{
return false;
}
while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i] && stateCount[4] < maxCount)
{
stateCount[4]++;
i++;
}
if (stateCount[4] >= maxCount)
{
return false;
}
// If we found a finder-pattern-like section, but its size is more than 100% different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
return Math.Abs(stateCountTotal - originalStateCountTotal) < 2*originalStateCountTotal &&
foundPatternCross(stateCount);
}
///
/// After a horizontal scan finds a potential finder pattern, this method
/// "cross-checks" by scanning down vertically through the center of the possible
/// finder pattern to see if the same proportion is detected.
///
/// row where a finder pattern was detected
/// center of the section that appears to cross a finder pattern
/// maximum reasonable number of modules that should be
/// observed in any reading state, based on the results of the horizontal scan
/// The original state count total.
///
/// vertical center of finder pattern, or null if not found
///
private float? crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal)
{
int maxI = image.Height;
int[] stateCount = CrossCheckStateCount;
// Start counting up from center
int i = startI;
while (i >= 0 && image[centerJ, i])
{
stateCount[2]++;
i--;
}
if (i < 0)
{
return null;
}
while (i >= 0 && !image[centerJ, i] && stateCount[1] <= maxCount)
{
stateCount[1]++;
i--;
}
// If already too many modules in this state or ran off the edge:
if (i < 0 || stateCount[1] > maxCount)
{
return null;
}
while (i >= 0 && image[centerJ, i] && stateCount[0] <= maxCount)
{
stateCount[0]++;
i--;
}
if (stateCount[0] > maxCount)
{
return null;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image[centerJ, i])
{
stateCount[2]++;
i++;
}
if (i == maxI)
{
return null;
}
while (i < maxI && !image[centerJ, i] && stateCount[3] < maxCount)
{
stateCount[3]++;
i++;
}
if (i == maxI || stateCount[3] >= maxCount)
{
return null;
}
while (i < maxI && image[centerJ, i] && stateCount[4] < maxCount)
{
stateCount[4]++;
i++;
}
if (stateCount[4] >= maxCount)
{
return null;
}
// If we found a finder-pattern-like section, but its size is more than 40% different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal)
{
return null;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : null;
}
/// Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical,
/// except it reads horizontally instead of vertically. This is used to cross-cross
/// check a vertical cross check and locate the real center of the alignment pattern.
///
private float? crossCheckHorizontal(int startJ, int centerI, int maxCount, int originalStateCountTotal)
{
int maxJ = image.Width;
int[] stateCount = CrossCheckStateCount;
int j = startJ;
while (j >= 0 && image[j, centerI])
{
stateCount[2]++;
j--;
}
if (j < 0)
{
return null;
}
while (j >= 0 && !image[j, centerI] && stateCount[1] <= maxCount)
{
stateCount[1]++;
j--;
}
if (j < 0 || stateCount[1] > maxCount)
{
return null;
}
while (j >= 0 && image[j, centerI] && stateCount[0] <= maxCount)
{
stateCount[0]++;
j--;
}
if (stateCount[0] > maxCount)
{
return null;
}
j = startJ + 1;
while (j < maxJ && image[j, centerI])
{
stateCount[2]++;
j++;
}
if (j == maxJ)
{
return null;
}
while (j < maxJ && !image[j, centerI] && stateCount[3] < maxCount)
{
stateCount[3]++;
j++;
}
if (j == maxJ || stateCount[3] >= maxCount)
{
return null;
}
while (j < maxJ && image[j, centerI] && stateCount[4] < maxCount)
{
stateCount[4]++;
j++;
}
if (stateCount[4] >= maxCount)
{
return null;
}
// If we found a finder-pattern-like section, but its size is significantly different than
// the original, assume it's a false positive
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal)
{
return null;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : null;
}
///
/// This is called when a horizontal scan finds a possible alignment pattern. It will
/// cross check with a vertical scan, and if successful, will, ah, cross-cross-check
/// with another horizontal scan. This is needed primarily to locate the real horizontal
/// center of the pattern in cases of extreme skew.
/// And then we cross-cross-cross check with another diagonal scan.
/// If that succeeds the finder pattern location is added to a list that tracks
/// the number of times each location has been nearly-matched as a finder pattern.
/// Each additional find is more evidence that the location is in fact a finder
/// pattern center
///
/// reading state module counts from horizontal scan
/// row where finder pattern may be found
/// end of possible finder pattern in row
/// if set to true [pure barcode].
///
/// true if a finder pattern candidate was found this time
///
protected bool handlePossibleCenter(int[] stateCount, int i, int j, bool pureBarcode)
{
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
stateCount[4];
float? centerJ = centerFromEnd(stateCount, j);
if (centerJ == null)
return false;
float? centerI = crossCheckVertical(i, (int)centerJ.Value, stateCount[2], stateCountTotal);
if (centerI != null)
{
// Re-cross check
centerJ = crossCheckHorizontal((int)centerJ.Value, (int)centerI.Value, stateCount[2], stateCountTotal);
if (centerJ != null &&
(!pureBarcode || crossCheckDiagonal((int) centerI, (int) centerJ, stateCount[2], stateCountTotal)))
{
float estimatedModuleSize = stateCountTotal / 7.0f;
bool found = false;
for (int index = 0; index < possibleCenters.Count; index++)
{
var center = possibleCenters[index];
// Look for about the same center and module size:
if (center.aboutEquals(estimatedModuleSize, centerI.Value, centerJ.Value))
{
possibleCenters.RemoveAt(index);
possibleCenters.Insert(index, center.combineEstimate(centerI.Value, centerJ.Value, estimatedModuleSize));
found = true;
break;
}
}
if (!found)
{
var point = new FinderPattern(centerJ.Value, centerI.Value, estimatedModuleSize);
possibleCenters.Add(point);
if (resultPointCallback != null)
{
resultPointCallback(point);
}
}
return true;
}
}
return false;
}
/// number of rows we could safely skip during scanning, based on the first
/// two finder patterns that have been located. In some cases their position will
/// allow us to infer that the third pattern must lie below a certain point farther
/// down in the image.
///
private int findRowSkip()
{
int max = possibleCenters.Count;
if (max <= 1)
{
return 0;
}
ResultPoint firstConfirmedCenter = null;
foreach (var center in possibleCenters)
{
if (center.Count >= CENTER_QUORUM)
{
if (firstConfirmedCenter == null)
{
firstConfirmedCenter = center;
}
else
{
// We have two confirmed centers
// How far down can we skip before resuming looking for the next
// pattern? In the worst case, only the difference between the
// difference in the x / y coordinates of the two centers.
// This is the case where you find top left last.
hasSkipped = true;
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
return (int)(Math.Abs(firstConfirmedCenter.X - center.X) - Math.Abs(firstConfirmedCenter.Y - center.Y)) / 2;
}
}
}
return 0;
}
/// true iff we have found at least 3 finder patterns that have been detected
/// at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the
/// candidates is "pretty similar"
///
private bool haveMultiplyConfirmedCenters()
{
int confirmedCount = 0;
float totalModuleSize = 0.0f;
int max = possibleCenters.Count;
foreach (var pattern in possibleCenters)
{
if (pattern.Count >= CENTER_QUORUM)
{
confirmedCount++;
totalModuleSize += pattern.EstimatedModuleSize;
}
}
if (confirmedCount < 3)
{
return false;
}
// OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive"
// and that we need to keep looking. We detect this by asking if the estimated module sizes
// vary too much. We arbitrarily say that when the total deviation from average exceeds
// 5% of the total module size estimates, it's too much.
float average = totalModuleSize / max;
float totalDeviation = 0.0f;
for (int i = 0; i < max; i++)
{
var pattern = possibleCenters[i];
totalDeviation += Math.Abs(pattern.EstimatedModuleSize - average);
}
return totalDeviation <= 0.05f * totalModuleSize;
}
/// the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
/// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
/// size differs from the average among those patterns the least
///
private FinderPattern[] selectBestPatterns()
{
int startSize = possibleCenters.Count;
if (startSize < 3)
{
// Couldn't find enough finder patterns
return null;
}
// Filter outlier possibilities whose module size is too different
if (startSize > 3)
{
// But we can only afford to do so if we have at least 4 possibilities to choose from
float totalModuleSize = 0.0f;
float square = 0.0f;
foreach (var center in possibleCenters)
{
float size = center.EstimatedModuleSize;
totalModuleSize += size;
square += size * size;
}
float average = totalModuleSize / startSize;
float stdDev = (float)Math.Sqrt(square / startSize - average * average);
possibleCenters.Sort(new FurthestFromAverageComparator(average));
float limit = Math.Max(0.2f * average, stdDev);
for (int i = 0; i < possibleCenters.Count && possibleCenters.Count > 3; i++)
{
FinderPattern pattern = possibleCenters[i];
if (Math.Abs(pattern.EstimatedModuleSize - average) > limit)
{
possibleCenters.RemoveAt(i);
i--;
}
}
}
if (possibleCenters.Count > 3)
{
// Throw away all but those first size candidate points we found.
float totalModuleSize = 0.0f;
foreach (var possibleCenter in possibleCenters)
{
totalModuleSize += possibleCenter.EstimatedModuleSize;
}
float average = totalModuleSize / possibleCenters.Count;
possibleCenters.Sort(new CenterComparator(average));
//possibleCenters.subList(3, possibleCenters.Count).clear();
possibleCenters = possibleCenters.GetRange(0, 3);
}
return new[]
{
possibleCenters[0],
possibleCenters[1],
possibleCenters[2]
};
}
///
/// Orders by furthest from average
///
private sealed class FurthestFromAverageComparator : IComparer
{
private readonly float average;
public FurthestFromAverageComparator(float f)
{
average = f;
}
public int Compare(FinderPattern x, FinderPattern y)
{
float dA = Math.Abs(y.EstimatedModuleSize - average);
float dB = Math.Abs(x.EstimatedModuleSize - average);
return dA < dB ? -1 : dA == dB ? 0 : 1;
}
}
/// Orders by {@link FinderPattern#getCount()}, descending.
private sealed class CenterComparator : IComparer
{
private readonly float average;
public CenterComparator(float f)
{
average = f;
}
public int Compare(FinderPattern x, FinderPattern y)
{
if (y.Count == x.Count)
{
float dA = Math.Abs(y.EstimatedModuleSize - average);
float dB = Math.Abs(x.EstimatedModuleSize - average);
return dA < dB ? 1 : dA == dB ? 0 : -1;
}
return y.Count - x.Count;
}
}
}
}