/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using ZXing.Common; namespace ZXing.QrCode.Internal { /// ///

This class attempts to find finder patterns in a QR Code. Finder patterns are the square /// markers at three corners of a QR Code.

/// ///

This class is thread-safe but not reentrant. Each thread must allocate its own object. ///

/// Sean Owen public class FinderPatternFinder { private const int CENTER_QUORUM = 2; /// /// 1 pixel/module times 3 modules/center /// protected internal const int MIN_SKIP = 3; /// /// support up to version 10 for mobile clients /// protected internal const int MAX_MODULES = 57; private const int INTEGER_MATH_SHIFT = 8; private readonly BitMatrix image; private List possibleCenters; private bool hasSkipped; private readonly int[] crossCheckStateCount; private readonly ResultPointCallback resultPointCallback; /// ///

Creates a finder that will search the image for three finder patterns.

///
/// image to search public FinderPatternFinder(BitMatrix image) : this(image, null) { } /// /// Initializes a new instance of the class. /// /// The image. /// The result point callback. public FinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) { this.image = image; this.possibleCenters = new List(); this.crossCheckStateCount = new int[5]; this.resultPointCallback = resultPointCallback; } /// /// Gets the image. /// virtual protected internal BitMatrix Image { get { return image; } } /// /// Gets the possible centers. /// virtual protected internal List PossibleCenters { get { return possibleCenters; } } internal virtual FinderPatternInfo find(IDictionary hints) { bool tryHarder = hints != null && hints.ContainsKey(DecodeHintType.TRY_HARDER); bool pureBarcode = hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE); int maxI = image.Height; int maxJ = image.Width; // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (3 * maxI) / (4 * MAX_MODULES); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } bool done = false; int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI && !done; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image[j, i]) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes bool confirmed = handlePossibleCenter(stateCount, i, j, pureBarcode); if (confirmed) { // Start examining every other line. Checking each line turned out to be too // expensive and didn't improve performance. iSkip = 2; if (hasSkipped) { done = haveMultiplyConfirmedCenters(); } else { int rowSkip = findRowSkip(); if (rowSkip > stateCount[2]) { // Skip rows between row of lower confirmed center // and top of presumed third confirmed center // but back up a bit to get a full chance of detecting // it, entire width of center of finder pattern // Skip by rowSkip, but back off by stateCount[2] (size of last center // of pattern we saw) to be conservative, and also back off by iSkip which // is about to be re-added i += rowSkip - stateCount[2] - iSkip; j = maxJ - 1; } } } else { stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; continue; } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } if (foundPatternCross(stateCount)) { bool confirmed = handlePossibleCenter(stateCount, i, maxJ, pureBarcode); if (confirmed) { iSkip = stateCount[0]; if (hasSkipped) { // Found a third one done = haveMultiplyConfirmedCenters(); } } } } FinderPattern[] patternInfo = selectBestPatterns(); if (patternInfo == null) return null; ResultPoint.orderBestPatterns(patternInfo); return new FinderPatternInfo(patternInfo); } /// Given a count of black/white/black/white/black pixels just seen and an end position, /// figures the location of the center of this run. /// private static float? centerFromEnd(int[] stateCount, int end) { var result = (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f; if (Single.IsNaN(result)) return null; return result; } /// count of black/white/black/white/black pixels just read /// /// true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios /// used by finder patterns to be considered a match /// protected internal static bool foundPatternCross(int[] stateCount) { int totalModuleSize = 0; for (int i = 0; i < 5; i++) { int count = stateCount[i]; if (count == 0) { return false; } totalModuleSize += count; } if (totalModuleSize < 7) { return false; } int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7; int maxVariance = moduleSize / 2; // Allow less than 50% variance from 1-1-3-1-1 proportions return Math.Abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance && Math.Abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance; } private int[] CrossCheckStateCount { get { crossCheckStateCount[0] = 0; crossCheckStateCount[1] = 0; crossCheckStateCount[2] = 0; crossCheckStateCount[3] = 0; crossCheckStateCount[4] = 0; return crossCheckStateCount; } } /// /// After a vertical and horizontal scan finds a potential finder pattern, this method /// "cross-cross-cross-checks" by scanning down diagonally through the center of the possible /// finder pattern to see if the same proportion is detected. /// /// row where a finder pattern was detected /// center of the section that appears to cross a finder pattern /// maximum reasonable number of modules that should be observed in any reading state, based on the results of the horizontal scan /// The original state count total. /// true if proportions are withing expected limits private bool crossCheckDiagonal(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int maxJ = image.Width; int[] stateCount = CrossCheckStateCount; // Start counting up, left from center finding black center mass int i = 0; while (startI - i >= 0 && image[centerJ - i, startI - i]) { stateCount[2]++; i++; } if ((startI - i < 0) || (centerJ - i < 0)) { return false; } // Continue up, left finding white space while ((startI - i >= 0) && (centerJ - i >= 0) && !image[centerJ - i, startI - i] && stateCount[1] <= maxCount) { stateCount[1]++; i++; } // If already too many modules in this state or ran off the edge: if ((startI - i < 0) || (centerJ - i < 0) || stateCount[1] > maxCount) { return false; } // Continue up, left finding black border while ((startI - i >= 0) && (centerJ - i >= 0) && image[centerJ - i, startI - i] && stateCount[0] <= maxCount) { stateCount[0]++; i++; } if (stateCount[0] > maxCount) { return false; } // Now also count down, right from center i = 1; while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i]) { stateCount[2]++; i++; } // Ran off the edge? if ((startI + i >= maxI) || (centerJ + i >= maxJ)) { return false; } while ((startI + i < maxI) && (centerJ + i < maxJ) && !image[centerJ + i, startI + i] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if ((startI + i >= maxI) || (centerJ + i >= maxJ) || stateCount[3] >= maxCount) { return false; } while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return false; } // If we found a finder-pattern-like section, but its size is more than 100% different than // the original, assume it's a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; return Math.Abs(stateCountTotal - originalStateCountTotal) < 2*originalStateCountTotal && foundPatternCross(stateCount); } /// ///

After a horizontal scan finds a potential finder pattern, this method /// "cross-checks" by scanning down vertically through the center of the possible /// finder pattern to see if the same proportion is detected.

///
/// row where a finder pattern was detected /// center of the section that appears to cross a finder pattern /// maximum reasonable number of modules that should be /// observed in any reading state, based on the results of the horizontal scan /// The original state count total. /// /// vertical center of finder pattern, or null if not found /// private float? crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int[] stateCount = CrossCheckStateCount; // Start counting up from center int i = startI; while (i >= 0 && image[centerJ, i]) { stateCount[2]++; i--; } if (i < 0) { return null; } while (i >= 0 && !image[centerJ, i] && stateCount[1] <= maxCount) { stateCount[1]++; i--; } // If already too many modules in this state or ran off the edge: if (i < 0 || stateCount[1] > maxCount) { return null; } while (i >= 0 && image[centerJ, i] && stateCount[0] <= maxCount) { stateCount[0]++; i--; } if (stateCount[0] > maxCount) { return null; } // Now also count down from center i = startI + 1; while (i < maxI && image[centerJ, i]) { stateCount[2]++; i++; } if (i == maxI) { return null; } while (i < maxI && !image[centerJ, i] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if (i == maxI || stateCount[3] >= maxCount) { return null; } while (i < maxI && image[centerJ, i] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return null; } // If we found a finder-pattern-like section, but its size is more than 40% different than // the original, assume it's a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : null; } ///

Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical, /// except it reads horizontally instead of vertically. This is used to cross-cross /// check a vertical cross check and locate the real center of the alignment pattern.

///
private float? crossCheckHorizontal(int startJ, int centerI, int maxCount, int originalStateCountTotal) { int maxJ = image.Width; int[] stateCount = CrossCheckStateCount; int j = startJ; while (j >= 0 && image[j, centerI]) { stateCount[2]++; j--; } if (j < 0) { return null; } while (j >= 0 && !image[j, centerI] && stateCount[1] <= maxCount) { stateCount[1]++; j--; } if (j < 0 || stateCount[1] > maxCount) { return null; } while (j >= 0 && image[j, centerI] && stateCount[0] <= maxCount) { stateCount[0]++; j--; } if (stateCount[0] > maxCount) { return null; } j = startJ + 1; while (j < maxJ && image[j, centerI]) { stateCount[2]++; j++; } if (j == maxJ) { return null; } while (j < maxJ && !image[j, centerI] && stateCount[3] < maxCount) { stateCount[3]++; j++; } if (j == maxJ || stateCount[3] >= maxCount) { return null; } while (j < maxJ && image[j, centerI] && stateCount[4] < maxCount) { stateCount[4]++; j++; } if (stateCount[4] >= maxCount) { return null; } // If we found a finder-pattern-like section, but its size is significantly different than // the original, assume it's a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : null; } /// ///

This is called when a horizontal scan finds a possible alignment pattern. It will /// cross check with a vertical scan, and if successful, will, ah, cross-cross-check /// with another horizontal scan. This is needed primarily to locate the real horizontal /// center of the pattern in cases of extreme skew. /// And then we cross-cross-cross check with another diagonal scan.

/// If that succeeds the finder pattern location is added to a list that tracks /// the number of times each location has been nearly-matched as a finder pattern. /// Each additional find is more evidence that the location is in fact a finder /// pattern center ///
/// reading state module counts from horizontal scan /// row where finder pattern may be found /// end of possible finder pattern in row /// if set to true [pure barcode]. /// /// true if a finder pattern candidate was found this time /// protected bool handlePossibleCenter(int[] stateCount, int i, int j, bool pureBarcode) { int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; float? centerJ = centerFromEnd(stateCount, j); if (centerJ == null) return false; float? centerI = crossCheckVertical(i, (int)centerJ.Value, stateCount[2], stateCountTotal); if (centerI != null) { // Re-cross check centerJ = crossCheckHorizontal((int)centerJ.Value, (int)centerI.Value, stateCount[2], stateCountTotal); if (centerJ != null && (!pureBarcode || crossCheckDiagonal((int) centerI, (int) centerJ, stateCount[2], stateCountTotal))) { float estimatedModuleSize = stateCountTotal / 7.0f; bool found = false; for (int index = 0; index < possibleCenters.Count; index++) { var center = possibleCenters[index]; // Look for about the same center and module size: if (center.aboutEquals(estimatedModuleSize, centerI.Value, centerJ.Value)) { possibleCenters.RemoveAt(index); possibleCenters.Insert(index, center.combineEstimate(centerI.Value, centerJ.Value, estimatedModuleSize)); found = true; break; } } if (!found) { var point = new FinderPattern(centerJ.Value, centerI.Value, estimatedModuleSize); possibleCenters.Add(point); if (resultPointCallback != null) { resultPointCallback(point); } } return true; } } return false; } /// number of rows we could safely skip during scanning, based on the first /// two finder patterns that have been located. In some cases their position will /// allow us to infer that the third pattern must lie below a certain point farther /// down in the image. /// private int findRowSkip() { int max = possibleCenters.Count; if (max <= 1) { return 0; } ResultPoint firstConfirmedCenter = null; foreach (var center in possibleCenters) { if (center.Count >= CENTER_QUORUM) { if (firstConfirmedCenter == null) { firstConfirmedCenter = center; } else { // We have two confirmed centers // How far down can we skip before resuming looking for the next // pattern? In the worst case, only the difference between the // difference in the x / y coordinates of the two centers. // This is the case where you find top left last. hasSkipped = true; //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'" return (int)(Math.Abs(firstConfirmedCenter.X - center.X) - Math.Abs(firstConfirmedCenter.Y - center.Y)) / 2; } } } return 0; } /// true iff we have found at least 3 finder patterns that have been detected /// at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the /// candidates is "pretty similar" /// private bool haveMultiplyConfirmedCenters() { int confirmedCount = 0; float totalModuleSize = 0.0f; int max = possibleCenters.Count; foreach (var pattern in possibleCenters) { if (pattern.Count >= CENTER_QUORUM) { confirmedCount++; totalModuleSize += pattern.EstimatedModuleSize; } } if (confirmedCount < 3) { return false; } // OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive" // and that we need to keep looking. We detect this by asking if the estimated module sizes // vary too much. We arbitrarily say that when the total deviation from average exceeds // 5% of the total module size estimates, it's too much. float average = totalModuleSize / max; float totalDeviation = 0.0f; for (int i = 0; i < max; i++) { var pattern = possibleCenters[i]; totalDeviation += Math.Abs(pattern.EstimatedModuleSize - average); } return totalDeviation <= 0.05f * totalModuleSize; } /// the 3 best {@link FinderPattern}s from our list of candidates. The "best" are /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module /// size differs from the average among those patterns the least /// private FinderPattern[] selectBestPatterns() { int startSize = possibleCenters.Count; if (startSize < 3) { // Couldn't find enough finder patterns return null; } // Filter outlier possibilities whose module size is too different if (startSize > 3) { // But we can only afford to do so if we have at least 4 possibilities to choose from float totalModuleSize = 0.0f; float square = 0.0f; foreach (var center in possibleCenters) { float size = center.EstimatedModuleSize; totalModuleSize += size; square += size * size; } float average = totalModuleSize / startSize; float stdDev = (float)Math.Sqrt(square / startSize - average * average); possibleCenters.Sort(new FurthestFromAverageComparator(average)); float limit = Math.Max(0.2f * average, stdDev); for (int i = 0; i < possibleCenters.Count && possibleCenters.Count > 3; i++) { FinderPattern pattern = possibleCenters[i]; if (Math.Abs(pattern.EstimatedModuleSize - average) > limit) { possibleCenters.RemoveAt(i); i--; } } } if (possibleCenters.Count > 3) { // Throw away all but those first size candidate points we found. float totalModuleSize = 0.0f; foreach (var possibleCenter in possibleCenters) { totalModuleSize += possibleCenter.EstimatedModuleSize; } float average = totalModuleSize / possibleCenters.Count; possibleCenters.Sort(new CenterComparator(average)); //possibleCenters.subList(3, possibleCenters.Count).clear(); possibleCenters = possibleCenters.GetRange(0, 3); } return new[] { possibleCenters[0], possibleCenters[1], possibleCenters[2] }; } /// /// Orders by furthest from average /// private sealed class FurthestFromAverageComparator : IComparer { private readonly float average; public FurthestFromAverageComparator(float f) { average = f; } public int Compare(FinderPattern x, FinderPattern y) { float dA = Math.Abs(y.EstimatedModuleSize - average); float dB = Math.Abs(x.EstimatedModuleSize - average); return dA < dB ? -1 : dA == dB ? 0 : 1; } } ///

Orders by {@link FinderPattern#getCount()}, descending.

private sealed class CenterComparator : IComparer { private readonly float average; public CenterComparator(float f) { average = f; } public int Compare(FinderPattern x, FinderPattern y) { if (y.Count == x.Count) { float dA = Math.Abs(y.EstimatedModuleSize - average); float dB = Math.Abs(x.EstimatedModuleSize - average); return dA < dB ? 1 : dA == dB ? 0 : -1; } return y.Count - x.Count; } } } }